

Trader API

[image:]China Financial Futures Exchange
September 12, 2018

	Ver. No.
	Rev. date
	Remarks

	V1.5
	2011-06-21
	First issue

	V1.59
	2014-05-09
	Issue of Version 1.59

	V1.59.2
	2014-08-04
	Issue of Version 1.59.2

	V1.61
	2014-09-29
	Issue of Beta Version 1.61

	V1.62
	2015-06-05
	Issue of Version 1.62

	V1.62
	2018-09-12
	Extend error codes and enumeration codes based on the Version 1.62 API to support OTC business

Table of Contents
Chapter 1	Introduction	1
1.1.	About TraderAPI	1
1.2.	Platforms for TraderAPI	1
1.3.	Revision History	1
1.3.1.	Version 1.62 L300	1
1.3.2.	Version 1.61 L300	1
1.3.3.	Version 1.59.2 L300	2
1.3.4.	Version 1.59 L300	2
1.3.5.	Version 1.5 L300	2
Chapter 2	Architecture	4
2.1	Communication Mode	4
2.2	Data Flow	5
Chapter 3	Interface Mode	7
3.1	Dialogue Flow and Query Flow Programming Interface	7
3.2	Private Flow Programming Interface	7
3.3	Public Flow Programming Interface	8
Chapter 4	Operating Mode	9
4.1	Work Process	9
4.1.1	Initialization phase	9
4.1.2	Function calling phase	9
4.2	Worker Thread	9
4.3	Member System Uses TraderAPI to Interact With the Trading System	10
4.4	Connection to the Exchange's Front-end System	12
4.5	Local Files	12
4.6	Request/Response Log File	13
4.7	Method of Subscribing to Reliable Data Flows	13
4.7.1	Method of subscribing to reliable data flows	13
4.7.2	The member system maintains the sequence number of the retransmission message	14
4.8	Heartbeat Mechanism	14
4.9	List of Front-end Processors	15
4.10	Disaster Recovery Interface	17
Chapter 5	Classification of TraderAPI Interfaces	19
5.1	Management Interfaces	19
5.2	Business Interfaces	20
5.3	Interfaces that is not open in the current version	22
Chapter 6	TraderAPI’s User Manual	24
6.1	CFfexFtdcTraderSpi Interface	24
6.1.1	OnFrontConnected method	24
6.1.2	OnFrontDisconnected method	24
6.1.3	OnHeartBeatWarning method	24
6.1.4	OnPackageStart method	24
6.1.5	OnPackageEnd method	25
6.1.6	OnRspUserLogin method	25
6.1.7	OnRspUserLogout method	26
6.1.8	OnRspUserPasswordUpdate method	27
6.1.9	OnRspSubscribeTopic method	28
6.1.10	OnRspQryTopic method	29
6.1.11	OnRspError method	30
6.1.12	OnRspOrderInsert method	30
6.1.13	OnRspOrderAction method	33
6.1.14	OnRspQuotelnsert method	35
6.1.15	OnRspQuoteAction method	37
6.1.16	OnRspExecOrderlnsert method	39
6.1.17	OnRspExecOrderAction method	40
6.1.18	OnRspQryPartAccount method	42
6.1.19	OnRspQryOrder method	43
6.1.20	OnRspQryQuote method	45
6.1.21	OnRspQryTrade method	47
6.1.22	OnRspForQuote method	49
6.1.23	OnRspQryClient method	50
6.1.24	OnRspQryPartPosition method	51
6.1.25	OnRspQryClientPosition method	53
6.1.26	OnRspQrylnstrument method	55
6.1.27	OnRspQrylnstrumentStatus method	56
6.1.28	OnRspQryBulletin method	57
6.1.29	OnRspQryMarketData method	58
6.1.30	OnRspQryMBLMarketData method	60
6.1.31	OnRspQryHedgeVolume method	60
6.1.32	OnRtnTrade method	61
6.1.33	OnRtnOrder method	62
6.1.34	OnRtnQuote method	64
6.1.35	OnRtnForQuote method	65
6.1.36	OnRtnExecOrder method	66
6.1.37	OnRtnlnstrumentStatus method	67
6.1.38	OnRtnlnsInstrument method	68
6.1.39	O OnRtnDellnstrument method	69
6.1.40	OnRtnlnsCombinationLeg method	70
6.1.41	OnRtnDelCombinationLeg method	71
6.1.42	OnRtnBulletin method	71
6.1.43	OnRtnAliasDefine method	72
6.1.44	OnRtnFlowMessageCancel method	73
6.1.45	OnErrRtnOrderlnsert method	73
6.1.46	OnErrRtnOrderAction method	75
6.1.47	OnErrRtnQuotelnsert method	75
6.1.48	OnErrRtnQuoteAction method	76
6.1.49	OnErrRtnExecOrderlnsert method	77
6.1.50	OnErrRtnExecOrderAction method	79
6.1.51	OnRspQryCombOrder method	80
6.1.52	OnRtnCombOrder method	82
6.1.53	OnErrRtnCombOrderInsert method	85
6.1.54	OnRspAdminOrderInsert method	87
6.1.55	OnRspQryCreditLimit method	88
6.1.56	OnRspMarginCombAction method	89
6.1.57	OnRtnMarginCombAction method	90
6.1.58	OnRspQryPartClientCombPosition method	91
6.1.59	OnRspQryPartClientLegPosition method	92
6.1.60	OnRtnMarginCombinationLeg method	93
6.2	CFfexFtdcTraderApi interface	94
6.2.1	CreateFtdcTraderApi method	94
6.2.2	GetVersion method	94
6.2.3	Release method	95
6.2.4	Init method	95
6.2.5	Join method	95
6.2.6	GetTradingDay method	95
6.2.7	RegisterSpi method	95
6.2.8	RegisterFront method	95
6.2.9	RegisterNameServer method	96
6.2.10	SetHeartbeatTimeout method	96
6.2.11	OpenRequestLog method	96
6.2.12	OpenResponseLog method	97
6.2.13	SubscribePrivateTopic method	97
6.2.14	SubscribePublicTopic method	97
6.2.15	SubscribeUserTopic method	97
6.2.16	SubscribeForQuote method	98
6.2.17	ReqUserLogin method	98
6.2.18	ReqUserLogout method	99
6.2.19	ReqUserPasswordUpdate method	100
6.2.20	ReqSubscribeTopic method	100
6.2.21	ReqQryTopic method	101
6.2.22	ReqOrderInsert method	101
6.2.23	ReqOrderAction method	104
6.2.24	ReqQuoteInsert method	105
6.2.25	ReqQuoteAction method	106
6.2.26	ReqForQuote method	106
6.2.27	ReqExecOrderInsert method	107
6.2.28	ReqExecOrderAction method	108
6.2.29	ReqQryPartAccount method	109
6.2.30	ReqQryOrder method	110
6.2.31	ReqQryQuote method	110
6.2.32	ReqQryTrade method	111
6.2.33	ReqQryClient method	112
6.2.34	ReqQryPartPosition method	113
6.2.35	ReqQryClientPosition method	113
6.2.36	ReqQryInstrument method	114
6.2.37	ReqQryInstrumentStatus method	115
6.2.38	ReqQryMarketData method	115
6.2.39	ReqQryBulletin method	116
6.2.40	ReqQryMBLMarketData method	116
6.2.41	ReqQryHedgeVolume method	117
6.2.42	ReqCombOrderInsert method	118
6.2.43	ReqQryCombOrder method	120
6.2.44	ReqAdminOrderlnsert method	122
6.2.45	ReqQryCreditLimit method	122
6.2.46	ReqMarginCombAction method	123
6.2.47	ReqQryPartClientCombPosition method	124
6.2.48	ReqQryPartClientLegPosition method	124
Chapter 7	Development Example	126
Chapter 8	Appendix	129
8.1	List of Error Codes	129
8.2	List of Enumerated Codes	136
8.3	Data Type List	140

	Technical Document
	Trader application programming interface

	Copyright Reserved © China Financial Futures Exchange
	Page III

[bookmark: _bookmark0][bookmark: _Toc8400985]Chapter 1	Introduction
[bookmark: _bookmark1][bookmark: _Toc8400986]1.1.	About TraderAPI
The Trading System API is a C++-based class library that implements all trading functions by using and extending the interfaces provided by the class library, including order insert, order revocation, order query, trade query, member’s client query, member position query, client position query, instrument query, instrument trading status query, Exchange bulletin query, quote insert, and inquiry request. This library contains the following five files:
	Name
	Version
	Description

	CFFEXFtdcTraderApi.h
	V1.62 L300
	Trader API header file

	CFFEXFtdcUserApiStruct.h
	V1.62 L300
	A header file that defines a set of data types required by the UserAPI

	CFFEXFtdcUserApiDataType.h
	V1.62 L300
	A header file that defines a set of business-related data structures

	CFFEXtraderapi.dll
	V1.62 L300
	Windows dynamic link library binary file

	CFFEXtraderapi.lib
	V1.62 L300
	Import library file

	CFFEXtraderapi.so.lnx64
	V1.62 L300
	Linux dynamic library

Windows supports MS VC 6.0, MS VC.NET 2003 compiler. Multi-threaded compilation option /MT needs to be opened. The Linux version of the api is based on the Redhat 6.3 version, and the gcc version is 4.4.6, depending on the openssl library.
Note: V1.59 has added the quote function for market makers, and a new interface for client inquiry. In the development process of the member system, it is necessary to pay attention to the "business that is not open in the current version" and the details in each function description.
[bookmark: _bookmark2][bookmark: _Toc8400987]1.2.	Platforms for TraderAPI
The versions for the following operating system platforms are currently launched:
●	IntelX86/WindowsXP: including .h files, .dll files, and .lib files.
●	LinuxRedHat6.3: including .h files and .so files.
[bookmark: _bookmark3][bookmark: _Toc8400988]1.3.	Revision History
[bookmark: _bookmark4][bookmark: _Toc8400989]1.3.1.	Version 1.62 L300
●	The direct connection to the Exchange function is deleted from this version.
[bookmark: _GoBack]	The TraderAPI closes the direct connection interface RegisterFront to the Exchange, and uniformly accesses the NameServer through the interface RegisterNameServer to obtain the address of front-end processors and connect to the trading front-end processors.
●	Optimizes the version’s performance and reduces latency
●	Modifies the list of error codes to support OTC business
●	Modifies the list of enumeration codes to support OTC business
●	OnRspQryInstrument adds field deprecation instructions
[bookmark: _bookmark5][bookmark: _Toc8400990]1.3.2.	Version 1.61 L300
●	This version provides features related to combination positions margining:
	The TraderAPI adds descriptions of ReqMarginCombAction, OnRspMarginCombAction, and OnRtnMarginCombAction methods for client forming combination positions or splitting combination positions.
	The TraderAPI adds descriptions of ReqQryPartClientCombPosition and OnRspQryPartClientCombPosition methods for client querying combination positions.
	The TraderAPI adds descriptions of ReqQryPartClientLegPosition and OnRspQryPartClientLegPosition methods for clients querying single-leg position.
	The TraderAPI adds a description of OnRtnMarginCombinationLeg method. After logging in to the trading system, if the member seat subscribes to the public flow, the trading system will push the full amount of the combination rule information to the member seat.
	Modifies the list of error codes.
	Modifies the list of enumeration codes.
	Modified the list of data types.
[bookmark: _bookmark6][bookmark: _Toc8400991]1.3.3.	Version 1.59.2 L300
●	This version extends the types of the order orders
	Types of orders supported by the trading system expands to nine. Besides limit order and market order, newly added types include FAK, FOK, market-to-limit at any price, market order at five best prices, market-to-limit at five best prices, market order at best price and market-to-limit at best price. Order types are formed by three fields, OrderPriceType ("order price condition"), TimeCondition ("term of validity"), and VolumeCondition ("trading volume type").
	Two new header files are added, namely CFFEXFtdcUserApiDataType.h, CFFEXFtdcUserApiStruct.h, to support the new order types. No new dynamic link library is released.
[bookmark: _bookmark7][bookmark: _Toc8400992]1.3.4.	Version 1.59 L300
●	The quote function is added in this version:
	The quote interface for market makers is opened, so that the market makers can respond to the client's inquiry request for bilateral quote.
	The market maker quote revocation interface is opened for revoking quotes.
●	This version provides client inquiry function:
	When logging in to the trading system, if the market maker subscribes to the inquiry flow, the response will return the current inquiry flow length for the whole market, and forward the inquiry request to the market maker’s member end according to the market maker’s subscription mode.
	Descriptions of the ReqForQuote and OnRspForQuote methods for client inquiry are added.
	A description of the OnRtnForQuote method to notify the market maker of the client inquiry is added.
[bookmark: _bookmark8][bookmark: _Toc8400993]1.3.5.	Version 1.5 L300
●	This version provides disaster recovery features:
	 [Disaster Recovery Interface] is added to explain the principle of disaster recovery.
	Since the data center code is added to the login message, the TraderAPI modifies the parameters of the ReqUserLogin and OnRspUserLogin methods.
	The TraderAPI adds a description of the " Notice on Data Flow Cancellation " OnRtnFlowMessageCancel method.
●	This version provides the function of querying data flow length:
	When logging into the trading system, the current member private flow length and the trader private flow length will be returned in the response.
	The TraderAPI adds descriptions of the ReqQryTopic and RspQryTpoic methods for querying flow lengths.
●	The problems found in previous versions are corrected:
	The TraderAPI adds a description of the GetVersion method, as the previous version provided the function without document description.
●	Use limit
[bookmark: _bookmark9]	In order to improve the performance of the API, in the WIN32 environment, the TraderAPI randomly uses the Tcp port of 39901-39950 during initialization. The Linux version does not have this limitation.

[bookmark: _Toc8400994]Chapter 2	Architecture
The Trader API uses the FTD protocol built on the TCP protocol to communicate with the Exchange's trading front-end systems. The trading front-end systems are responsible for the trading of the member systems. It does not publish any market data. Receiving market data requires the use of the "Market Data API".
[bookmark: _bookmark10][bookmark: _Toc8400995]2.1	Communication Mode
All communications in the FTD protocol are based on a certain communication mode. The communication mode is actually the way the communication parties work together.
There are three communication modes involved in FTD:
●	Dialogue communication mode
●	Private communication mode
●	Broadcast communication mode
The dialogue communication mode means that a communication request is initiated by the member end. The request is received and processed and a response is given by the Exchange. For example, orders, queries, etc. This communication mode is the same as the normal client/server mode.
The private communication mode means that the Exchange takes the initiative to send information to a specific member. For example, trading return, etc.
The broadcast communication mode means that the Exchange takes the initiative to send the same information to relevant members in the market. For example, bulletins, market public information, etc.
There is no simple one-to-one relationship in the communication mode and network connection. That is to say, messages of different communication modes may be sent in one network connection, and messages of one communication mode may also be sent in multiple different connections.
Communication process is shown in Figure 1:
Member system
Exchange system
Connection request
Connection confirmation
Identity authentication request
Identity authentication response
Send a request (if in dialogue mode)
Give a response (if in dialogue mode)
Send private information (if in private mode)
Send market bulletin (if in market mode)
Disconnection request
Disconnection confirmation

Figure 1)	Working process of each communication mode
[bookmark: _bookmark11][bookmark: _Toc8400996]2.2	Data Flow
The trading front-end processors support dialogue communication mode, private communication mode, and broadcast communication mode:
1、	Dialogue communication mode
Dialogue data flow and query data flow are supported in the dialogue communication mode:
Dialogue data flow is a two-way mechanism where the member system sends a trading request, and the trading system gives a response. The trading system does not maintain the status of the dialogue flow. In the event of a system failure, the dialogue data flow will be reset and the data in transit may be lost.
Query data flow is a two-way mechanism where the member system sends a query request, and the trading system gives a response. The trading system does not maintain the status of the query flow. In the event of a system failure, the query data flow will be reset and the data in transit may be lost.
2、	Private communication mode
Private data flow is supported in the private communication mode:
Private flow is a one-way mechanism where the trading system sends a notice and return information private to the trader to the member system. Private flow is a reliable data flow. The trading system maintains the private flow of each member system. When the member system is disconnected and reconnected within one trading day, the trading system can be requested to send the private flow data after the specified sequence number. Private data flow provides the member system with information such as order status reports and trading returns.
3、	Broadcast communication mode
Public data flow is supported in the broadcast communication mode:
Public data flow is a one-way mechanism where public market information is sent from the trading system to the member system; public data flow is also a reliable data flow. The trading system maintains the public data flow of the entire system. When the member system is disconnected and reconnected within one trading day, the trading system can be requested to send the public flow data after the specified sequence number.

[bookmark: _bookmark12][bookmark: _Toc8400997]Chapter 3	Interface Mode
The Trader API provides two interfaces: CFfexFtdcTraderApi and CFfexFtdcTraderSpi. These two interfaces encapsulate the FTD protocol to facilitate the development of the client APP.
The client APP can send an action request via CFfexFtdcTraderApi, and handle the response of the backend service by inheriting CFfexFtdcTraderSpi and overloading the callback function.
[bookmark: _bookmark13][bookmark: _Toc8400998]3.1	Dialogue Flow and Query Flow Programming Interface
The programming interface for communication through the dialogue flow is usually as follows:

	//// Request：
int CFfexFtdcTraderApi::ReqXXX(
CFfexFtdcXXXField *pReqXXX,
int nRequestID)
//// Request：
void CFfexFtdcTraderSpi::OnRspXXX(
CFfexFtdcXXXField *pRspXXX,
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)

The first parameter of the request interface is the request content, and cannot be empty. This parameter has different classes depending on the request order. For the type and legal value of the member variables of this class, please refer to the "List of Enumerated Values" and "List of Data Types" in the Appendix. The second parameter is the request ID. The request ID is maintained by the client APP. Under normal circumstances, the ID of each request should not be repeated. When receiving the response from the trading backend, the request ID filled in when performing the request can be obtained, so that the response can be associated with the request.
The CFfexFtdcTraderSpi callback function is called when a backend service response is received. If there is more than one response datum, the callback function will be called multiple times.
The first parameter of the callback function is the specific data of the response. If there is an error or no result, it may be NULL.
The second parameter is the processing result, indicating whether the processing result of this request is a success or a failure. When multiple callbacks occur, the callbacks may all be NULL except the first one.
The third parameter is the request ID, which is the request ID originally filled in when the request is sent.
The fourth parameter is the response end flag, indicating whether it is the last callback of this response.
[bookmark: _bookmark14][bookmark: _Toc8400999]3.2	Private Flow Programming Interface
The private information of the members in the private flow data includes order return, trading return, quote return, and executed bulletin return.
The programming interfaces that receive returns through private flows are usually as follows:
	void CFfexFtdcTraderSpi::OnRtnXXX(CFfexFtdcXXXField *pXXX)
//// or
void CFfexFtdcTraderSpi::OnErrRtnXXX(CFfexFtdcXXXField *pXXX,
CFfexFtdcRspInfoField *pRspInfo)

The CFfexFtdcTraderSpi callback function is called when the return data sent by the trading backend is received through the private flow. The parameters of the callback function are the specific content of the return.
[bookmark: _bookmark15][bookmark: _Toc8401000]3.3	Public Flow Programming Interface
The public information of the Exchange in the public flow data includes instruments, bulletins, etc.
The programming interfaces that receive returns through the public flow are usually as follows:
[image:]
The CFfexFtdcTraderSpi callback function is called when the return data is published by the trading backend through the public flow. The parameters of the callback function are the specific content of the notification.

[bookmark: _bookmark16][bookmark: _Toc8401001]Chapter 4	Operating Mode
[bookmark: _bookmark17][bookmark: _Toc8401002]4.1	Work Process
The interaction process between the member system and the trading system is divided into two phases: the initialization phase and the function calling phase.
[bookmark: _bookmark18][bookmark: _Toc8401003]4.1.1	Initialization phase
In the initialization phase, the program of the member system must complete the following steps (for specific ID, please refer to the development instance):
	Sequence
	Member system

	1
	Generates a CFfexFtdcTraderApi instance;

	2
	Generates an instance of event processing;

	3
	Registers an instance of event processing;

	4
	Subscribes to the private flow;
Subscribes to the public flow;

	5
	Sets the network address of the trading front-end NameServer.

	6
	Initialize

1	Since Version 1.62, the trader API no longer provides an interface for direct registration of trading front-end processors, and uniformly accesses the NameServer to obtain the address of front-end processors See Section 4.9, List of front-end processors for a description of NameServer.
[bookmark: _bookmark19][bookmark: _Toc8401004]4.1.2	Function calling phase
In the function calling phase, the member system cancall any of the request methods in the trading system, such as ReqUserLogin and ReqOrderlnsert, and provide a callback function in response to the return information. Notes:
	The input parameters of the API request cannot be NULL.
	Among the returned parameters of the API request, 0 indicates correct, others indicate errors. For detailed error coding, please check the table.
[bookmark: _bookmark20][bookmark: _Toc8401005]4.2	Worker Thread
The trader client APP consists of at least two threads: one is the APP’s main thread and the other is the trader API’s worker thread. The communication between the APP and the trading system is driven by the worker thread of API.
The interface provided by CFfexFtdcTraderApi is thread-safe and multiple APP threads can make requests at the same time.
The interface callback provided by CFfexFtdcTraderSpi is driven by the worker thread of API. By implementing the interface method in the SPI, the required data can be collected from the trading front-end processor.
If one of the overloaded callback functions is blocked, it is equal to blocking the worker thread of TraderAPI, and communication between the TraderAPI and the trading system will stop. Therefore, in the callback function of CFfexFtdcTraderSpi derived class, it should usually return quickly, which can be achieved by putting data into a buffer or by using the Windows’ messaging mechanism.
Exchange front-end processor
API object
Response to API request
Commission modification information
Transaction information
Wrong commission information
Instrument modification information
etc.
SPI object
Login request
Commission request
Query request
Other API requests
Member offer program

[bookmark: _bookmark21][bookmark: _Toc8401006]4.3	Member System Uses TraderAPI to Interact With the Trading System
The member system interacts with the trading system via the TraderAPI. Requests from the member system are sent to the trading system via the TraderAPI; the responses and returns given by the trading system are returned to the member system via the TraderAPI.
The TraderAPI's trading interface and private flow interface will be related to each other. If a user inserts an order ReqOrderInsert, he/she will receive the order response OnRspOrderInsert immediately, indicating that the trading system has received the order. After the order enters the trading system, if the trading status of the order changes, the order return OnRtnOrder will be received. If the order is matched (including fill and partial fill), the return on the trade will be received OnRtnTrade. A user's order return and trade return will also be received by other traders under the member (if the user does not use only the trader private flow to log in).
Take the trader's daily trading as an example. There are two member systems: A and B. The events that occurred include:
1．	Trader A's order, IF0911, buy, 10 lots, CNY 900,000;
●	CFfexFtdcTraderApi::ReqOrderInsert: Request for order insert. This function is called by the application main thread of the member system and sent to the front-end processors of the V1.5 trading system through the dialog flow.
●	Order processing by the trading system: the order’s system number is 1; because there is no opponent in the matching queue at this time, the status of the order is “unfilled and still in the queue”. The front-end processors of the V1.5 trading system send a dialogue flow of order response to Trader A, and the private flow of order return to Trader A and the private flow to the member of Trader A. The response and return messages are processed by the worker thread of TraderAPI and call the Spi object's methods.
●	CFfexFtdcTraderSpi::OnRsqOrderInsert: The trading front-end processors of the Exchange give the response of the request. The content is: the insert is successful, and the system number of the order with the local number of 1 is 1. This function is called by the worker thread of TraderAPI after receiving the response of the front-end processors.
●	CFfexFtdcTraderSpi::OnRtnOrder: The trading front-end processors of the Exchange immediately give the order return in the private flow of the member of Trader A or the private flow of Trader A because the other seats cannot obtain the specific information of the order. In order to keep the information synchronized, the content of the return includes the entire content of the order, such as the status of the order. This function is called by the worker thread of TraderAPI after receiving the response of the front-end processors. If Member A has other traders connected and logged into the trading system and receives the member private flow, he/she will receive the same order return (the same rule applies below.).
2．	Trader B's order, IF0911, sell, 5 lots, CNY 450,000;
●	CFfexFtdcTraderApi::ReqOrderInsert: Request for order insert.
●	The trading system’s order processing: the order’s system number is 2; because there is no opponent in the matching queue at this time, the order status is “unfilled and still in the queue”.
●	The trading system’s order processing: the order’s system number is 2; if a trade is attempted and can be completed, the order status is “fill”. The front-end processors of the V1.5 trading system send a dialogue flow of order response to Trader B; the private flow of order return to Trader B and the private flow to the member of Trader B; the private flow of order return to Trader A and the private flow to the member of Trader A, indicating the trading system has changed the status of the order with the system number of 1 to "partial fill and still in the queue", and the "remaining quantity" of the order is adjusted to 5 lots; the private flow of trade return to Trader B and the private flow to the member of Trader B; and the private flow of trade return to Trader B and the private flow to the member of Trader B The V1.5 trading system will ensure that the order return is delivered to the member system before the trade return, and the “remaining quantity” field in the order return already reflects the latest quantity in the trading system's order book, and there is no need to further adjust based on the quantity in the trade return.
●	CFfexFtdcTraderSpi::OnRsqOrderInsert: The trading front-end processors of the Exchange give the response of the request. The content is: the insert is successful, and the system number of the order with the local number of 1 is 2.
●	CFfexFtdcTraderSpi::OnRtnOrder: The trading front-end processors of the Exchange immediately give the order return in the private flow of the member of Trader B or the private flow of Trader B. The order status is "fill".
●	CFfexFtdcTraderSpi::OnRtnOrder: The trading front-end processors of the Exchange immediately give the order return in the private flow of the member of Trader A or the private flow of Trader A. The order status is "unfilled and still in the queue", and the remaining quantity is 5 lots.
●	CFfexFtdcTraderSpi::OnRtnTrade: The trading front-end processors of the Exchange immediately give the trade return in the private flow of the member of Trader A or the private flow of Trader A.
●	CFfexFtdcTraderSpi::OnRtnTrade: The trading front-end processors of the Exchange immediately give the trade return in the private flow of the member of Trader B or the private flow of Trader B.
3．	Trader A withdraws the order;
The following figure illustrates the UML interaction between the member system, TraderAPI, and the trading system.
Member System A
Trader API
Exchange’s trading system
Trader API
Member System B
Order request: local number = 1, IF0911, buy, 10 lots, CNY 900,000
Order response: succeeded, local number = 1, system number = 1
Order return: local number = 1, system number = 1, status = unfilled and still in the queue
Order return: local number=1, system number=1, status=partial fill and still in the queue
Trade return: trade number = 1, local number = 1, system number = 1
Withdrawal request: system number=1
Withdrawal response: succeeded
Order return: local number=1, system number=1, status=withdrawn
Description:
Response flow
Private flow
Processing order
Processing order
Processing withdrawn order
Order request: local number=1, IF0911, sell, 5 lots, CNY 450,000
Order response: succeeded, local number = 1, system number = 2
Order return: local number = 1, system number = 2, status = fill
Trade return: trade number = 1, local number = 1, system number = 2

[bookmark: _bookmark22][bookmark: _Toc8401007]4.4	Connection to the Exchange's Front-end System
The TraderAPI uses the FTD protocol built on the TCP protocol to communicate with the Exchange's trading front-end systems. The TraderAPI uses the CFfexFtdcTraderSpi::RegisterNameServer method to register the NameServer server, obtain the network address of the Exchange's trading front-end systems and access the same.
The Exchange has multiple trading front-end systems for load balancing and mutual backup, which can improve the systems’ performance and reliability. In order to ensure the reliability of communication during trading and prevent single point of failure, the TraderAPI will obtain addresses of multiple front-end processors from the NameServer. After the API is initialized, it will randomly select a front-end processor from the acquired front-end processors and try to establish a network connection. If that fails, it will try other front-end processors one by one until the connection is successfully established. If the network connection fails during trading, the API still uses the above process to try to connect to other front-end processors.
China Financial Futures Exchange has enabled the NameServer. In the future, only the addresses of the NameServer rather than the addresses of multiple front-end processors will be announced. The TraderAPI uses the CFfexFtdcTraderApi:: RegisterNameServer method to register the network address of the Exchange’s name server. This function can be called multiple times to register the network addresses of multiple name servers. The TraderAPI will automatically connect to NameServer to get the addresses of a set of front-end processors and then connect to them.
China Financial Futures Exchange releasse the network addresses of at least two NameServers. Therefore, the member system should register at least the network addresses of the two NameServers to prevent the connected NameServers from failing and causing single point of failure. In view of the high bandwidth requirements of the FTD protocol, it is recommended that members use a DDN line of more than 128K or a 2M SDH digital line. China Financial Futures Exchange and Shanghai Futures Exchange will share member remote trading network access: the link directly connected to China Financial Futures Exchange can be used as a backup link to access Shanghai Futures Exchange; and vice versa.
[bookmark: _bookmark23][bookmark: _Toc8401008]4.5	Local Files
The Trader API will write some data into the local files during the running process. Calling the CreateFtdcTraderApi function may transmit a parameter to indicate the path to the local files. This path must be created before the running. The extension of all the local files is ".con". The local files of the Trader API and the Market Data API must be saved in separate directories.
[bookmark: _bookmark24][bookmark: _Toc8401009]4.6	Request/Response Log File
The TraderAPI provides two log interfaces for recording communication logs. OpenRequestLog is used to open the request log, and OpenResponseLog is used to open the response log. When the log is opened, all business requests are logged to the request log, and all business responses and returns are logged to the response log. Note that for confidentiality and saving storage space, login request/response and query request/response are not logged.
The request format is:
Date & time, request name, request result, [request parameter name, request parameter content]
The response format is:
Date & time, response name, response ID, response message, [response parameter name, response parameter content]
The return format is:
Date & time, return name, [return parameter name, return parameter content]
[bookmark: _bookmark25][bookmark: _Toc8401010]4.7	Method of Subscribing to Reliable Data Flows
Private flow, public flow, and market data flow in the FTD protocol can ensure that data is transmitted to the other party reliably and orderly, which are called reliable data flow. Reliable data flow is critical to ensuring the correctness and integrity of the member system's data. For example, the member system can obtain sufficient information through the various returns in the member’s private flow sent by the trading system to complete the business actions at the member end. In order to ensure the correctness of the member system’s business, it is necessary to receive the messages in the private flow reliably, orderly and uniquely.
Reliable data flow relies on retransmission to ensure reliable and orderly data transmission. That is, the client is responsible for managing the sequence number of the data flow. If a transmission interruption occurs, the data flow can be re-subscribed from the specified sequence number to ensure data integrity.
The dialogue flow and the query flow do not support retransmission and are unreliable data flows.
The trading system interface provides two ways to manage reliable data flows: the API maintains the retransmitted message’s sequence number, and the member system maintains the retransmitted message’s sequence number.
[bookmark: _bookmark26][bookmark: _Toc8401011]4.7.1	Method of subscribing to reliable data flows
When the API receives a reliable data flow message, (a) the SPI callback function would first be called to notify the member system, and (b) then the sequence number of the message would be recorded in the local file (extension name is .con). If the member system exits and then re-subscribes to the data flow, the data flow can be subscribed to by using the message’s sequence number recorded in the local file.
The SubscribePrivateTopic, SubscribePublicTopic, SubscribeUserTopic, and SubscribeReqForQuote methods of the CFfexFtdcTraderApi are used to subscribe to reliable data flows.
The retransmission method can be specified through the interface parameters. There are three retransmission methods: RESTART, RESUME, and QUICK.
	In the RESTART method, transmission starts from the first message in the data flow, and the API ignores the sequence number of the data flow recorded in the local file.
	In the RESUME method, transmission starts after the sequence number of the data flow recorded in the local file. In order to maintain the integrity of the member’s trading data, the Exchange recommends the RESUME method for the private flow of members or traders.
	In the QUICK method, transmission starts from the maximum sequence number of the data flow when performing subscription. The QUICK method is mainly used when there is no need to guarantee data integrity. For the private flow of members or traders, the Exchange does not recommend the QUICK method.
The number of the retransmission message maintained by API has a certain risk in data consistency. For example, if (a) is completed and (b) is not completed, the same message will be called back to the member system twice, so that the member system is more difficult to handle. In addition, if the local file recording the flow number is broken, the data flow has to be retransmitted, which may affect the efficiency of the member system.
If the API is used to maintain the sequence number of the retransmission message, the API records the two fields, TradingDay and DataCenterID, which were returned from the last login, in the file (resume.con); when logging in, the API will overwrite the two fields filled in by the member system using the values in the file.
[bookmark: _bookmark27][bookmark: _Toc8401012]4.7.2	The member system maintains the sequence number of the retransmission message
When the API receives a message of a reliable data flow, it (a) first calls the SPI OnPackageStart function to notify the member system of receiving a message, (b) calls the SPI callback function to notify the member system of business data, and (c) finally calls the SPI OnPackageEnd function to notify the member system that the callback of the message is over. In the OnPackageStart and OnPackageEnd interfaces, the member system can get the sequence number of the current callback message. The member system can record the sequence number. When retransmitting the reliable data flow, the sequence number is used as the parameter of the CFfexFtdcTraderApi::ReqSubscribeTopic method (similar to the RESUME method).
The member system can specify the sequence number of the data flow retransmission message through the CFfexFtdcTraderApi::ReqSubscribeTopic method. If the specified sequence number is 0, the entire data flow is retransmitted (similar to the RESTART method); if the specified sequence number is -1, retransmission starts from the maximum sequence number of the data flow at the subscription time (similar to the QUICK method).
The sequence number of the message retransmitted and maintained by the member system has better consistency and reliability than that by the API. This method should be used when the member system has high transaction integrity requirements as much as possible.
Note that when logging in, the return value of the last login response should be used to fill in TradingDay and DataCenterID. If you are logging in for the first time or do not need to resume transmission, TradingDay can be filled with an empty string (""), DataCenterID can be filled with 0 or the main data center ID published by the Exchange.
[bookmark: _bookmark28][bookmark: _Toc8401013]4.8	Heartbeat Mechanism
The TCP virtual link is used for communication between the member system and the Exchange's front-end processors. Assuming that the communication link fails, and there is no data communication between the member system and the front-end processors during this time period, or more precisely, neither party calls the Socket recv() and Socket send() functions, and therefore the two parties cannot distinguish the current working status of the system. They need to wait for the Socket timeout. Generally speaking, the operating system defines a long timeout, which is not conducive for the communication parties to monitor to improve the response speed and automatic recovery processing.
The working status of both communicating parties can be monitored by adding additional heartbeat information. The principle is simple and does not increase the communication cost of both parties: when there is business data transmission, both parties can detect the link and communication status; if there is no business data transmission, the heartbeat information needs to be sent to the other party (there is no transmission data on the link at this time, and the added heartbeat information does not bring pressure and cost to the bandwidth). Although there is no increase in communication costs, for servers (such as the Exchange’s front-end processors), as the number of connections increases, the cost of inspections (monitor every second whether it is needed to send heartbeat information and maintain connection table.) will increase linearly.
Heartbeat message could be added to check whether the connection is valid. If one end of the connection receives no message within the specified time (timeout)	from the other party, the TCP virtual link is considered failed and should be disconnected proactively. If one party does not send any message to the other party within a certain interval, it should send a heartbeat message to the other party to maintain the normal state of the TCP virtual link. Usually, the timeout is three times the interval.
The API provides the void SetHeartbeatTimeout(unsigned int timeout) method for setting the timeout period for the member system to detect the validity of the TCP virtual link: The trading system sends a heartbeat to the API every (timeout-1)/3 seconds when the trading system is idle. If no message is received from the trading system for more than the timeout/2 seconds, the callback of CFfexFtdcTraderApi::OnHeartBeatWarning() will be triggered; if no message is received from the trading system for more than the timeout seconds, the TCP connection will be interrupted, and the callback of CFfexFtdcTraderApi ::OnFrontDisconnected() will be triggered.
For example, if the member sets the heartbeat timeout to 16 seconds, the trading system will send a heartbeat message to the API every 5 seconds when it is idle. If the API does not receive any messages from the trading system within 8 seconds, the callback of CFfexFtdcTraderApi::OnHeartBeatWarning()will be triggered. If no message is received from the trading system for more than 16 seconds, the API will actively disconnect from the network and trigger a callback of CFfexFtdcTraderApi::OnFrontDisconnected(). At this point, the member end may use the alternate private dedicated link to reconnect the Exchange’s front-end processors.
The Exchange’s front-end processors also monitor the TCP connection of the member system through the heartbeat message: if the member system does not call the SetHeartbeatTimeout method, the heartbeat timeout is currently set to 120 seconds; if the member system calls the SetHeartbeatTimeout method, the timeout parameter will be used synchronously for the monitoring of the member by the front-end processors. This mechanism is very useful: after the link is interrupted, the front-end processors will be able to actively disconnect from the member's TCP within the approximate available time (timeout +5 seconds), so that members can log in using the alternate line (with a different IP address). Otherwise, the front-end processors will assume that the original address of the TCP connection is still valid and reject the login from the alternate address.
If the member system has not called the SetHeartbeatTimeout method, the default timeout of the API of the versions before (excluding) V1.20 is set to 120 seconds, and the default warning time is 80 seconds. In order to speed up the interruption of the member end trading system’s dedicated monitoring line link, the API starting from V1.20 version sets the timeout to 10 seconds by actively calling the SetHeartbeatTimeOut() method after initializing the connection with the front-end processors’ TCP. The minimum value allowed for the parameter timeout is 4. If the parameter timeout is set too high, when the link is interrupted, the member system switching time will be very long. If the parameter is set too low, unexpected switching may occur. It is necessary to consider the member end’s application and network conditions.
The Exchange recommends that the member system set the timeout value between 10 and 30 seconds.
[bookmark: _bookmark29][bookmark: _Toc8401014]4.9	List of Front-end Processors
The member system can access the trading system after connecting to the Exchange’s front-end processors. For fault tolerance and load balancing, the Exchange will deploy two sets of multiple front-end processors (each set comprises multiple units) in the primary and standby data centers. Before the Version 1.62, the API supports the member system to randomly select a front-end processor from the list of network addresses of front-end processors published by the Exchange and attempt to establish a connection; after the Version 1.62 (inclusive), the API only supports accessing the NameServer through the published list of NameServer addresses to obtain the addresses of the front-end processors and access them. The member system is connected to only one front-end processor at a certain time. If the connection is interrupted or times out due to a failure of the front-end processor, the member system needs to try to connect to other front-end processors in the list.
Member system can get a list of front-end processors by the following two ways:
	The Exchange publishes the list, and the member system registers the front-end processors into the API one by one through the RegisterFront interface of the API. (the Version 1.62 of the Trader API cancels this method).
	The trading system provides a NameServer whose function is to publish the list of the front-end processors to the API. The Exchange first publishes the NameServer list, and the member system registers the NameServer into the API through the RegisterNameServer interface of the API. The API first tries to get the list of the front-end processors from the NameServer and then tries to connect to a front-end processor based on the list.
The benefits of using NameServer are:
	It increases the flexibility of the Exchange's front-end processor deployment. Front-end processors can be added in the short term according to business needs and load without any modification to the member system.
	The NameServer can satisfactorily switch between the primary system and the disaster recovery system.
	The NameServer features single function, simple structure, and low load. Without the need to consider load balancing, it can be deployed flexibly.
The member system can register the list of front-end processors (supported by versions before V1.62) with the RegisterFront() method and register the NameServer list with the RegisterNameServer() method. The API will first try to connect to the registered front-end processors, and try to connect to the NameServer later if the connection is unsuccessful.
Flowchart of TraderAPI’s connection to front-end processors:
Start
Register the NameServer
Randomly select a NameServer from the NameServer list to connect
Yes
Yes
Yes
Connection succeeded?
No
No
Has the entire NameServer list been traversed?
Read the list of front-end processors from the NameServer
Register the list of front-end processors
Randomly select a front-end processor from the list of front-end processors for connection
Connection succeeded?
No
No
Yes
Has the entire list of front-end processors been traversed?
Create a dialogue with the front-end processor
Yes
End

[bookmark: _bookmark30][bookmark: _Toc8401015]4.10	Disaster Recovery Interface
The Exchange has two data centers at the futures building (building data center, the primary data center before using this interface) and Waigaoqiao. The two centers use high-speed fiber to realize the interconnection of the system. The V1.5 trading system runs in two data centers at the same time, and the primary center performs business processing; the standby center asynchronously receives the data of the primary center and synchronizes the business; the standby center is in a standby state.
When a catastrophic event occurs in the primary data center, operations can be switched to the standby center. The standby data center takes over the work of the primary data center and continues to process the business of the primary data center. Some data loss may occur in data center switching. The member system needs to know the trade to cancel through the API interface.
I.	The "Data Center ID" field is added to the API user login request interface to identify the last registered data center ID. In the user login response interface, the "Data Center ID" field is also added, and the trading system returns the currently used data center ID. The member system should save the data center ID returned by the trading system and fill in the login request at the next login.
II.	The API adds the "OnRtnFlowMessageCancel" interface. After the member sends a subscription request, it notifies the message to be cancelled in the topic subscribed. The member system can obtain the sequence number of the cancelled message according to the interface, thereby finding the original message. The sequence number of the original message can be obtained through the OnPackageStart and OnPackageEnd interfaces.

[bookmark: _bookmark31][bookmark: _Toc8401016]Chapter 5	Classification of TraderAPI Interfaces
[bookmark: _bookmark32][bookmark: _Toc8401017]5.1	Management Interfaces
The management interfaces controls the API's lifecycle and running parameters.
	Interface type
	Interface name
	Description

	Lifecycle management interfaces
	CFfexFtdcTraderApi::CreateFtdcTraderApi
	Create an instance of TraderApi

	
	CFfexFtdcTraderApi:: GetVersion
	Get the API version

	
	CFfexFtdcTraderApi:: Release
	Delete the instance of interface

	
	CFfexFtdcTraderApi:: Init
	Initialize

	
	CFfexFtdcTraderApi:: Join
	Wait for the interface thread to finish running

	Parameter management interfaces
	CFfexFtdcTraderApi:: RegisterSpi
	Register the callback interface

	
	CFfexFtdcTraderApi:: RegisterFront
	Register the network address of the front-end processor (cancelled in Version 1.62)

	
	CFfexFtdcTraderApi::RegisterNameServer
	Register the network address of the NameServer

	
	CFfexFtdcTraderApi::RegisterCertificateFile
	Load certificate

	
	CFfexFtdcTraderApi::SetHeartbeatTimeout
	Set the heartbeat timeout

	Subscription interface
	CFfexFtdcTraderApi::SubscribePrivateTopic
	Subscribe to private flow

	
	CFfexFtdcTraderApi::SubscribePublicTopic
	Subscribe to public flow

	
	CFfexFtdcTraderApi::SubscribeUserTopic
	Subscribe to trader flow

	Log interface
	CFfexFtdcTraderApi::OpenRequestLog
	Open the request log file

	
	CFfexFtdcTraderApi::OpenResponseLog
	Open the response log file

	Communication status interfaces
	CFfexFtdcTraderSpi::OnFrontConnected
	This method will be called when the communication connection is established with the trading system (before login).

	
	CFfexFtdcTraderSpi::OnFrontDisconnected
	This method will be called when the communication with the trading system is disconnected.

	
	CFfexFtdcTraderSpi::OnHeartBeatWarning
	This method will be called when the message has not been received for a long time.

	
	CFfexFtdcTraderSpi::OnPackageStart
	Notice on message callback start

	
	CFfexFtdcTraderSpi::OnPackageEnd
	Notice on message callback end

	Disaster recovery interface
	CFfexFtdcTraderSpi::OnRtnFlowMessageCancel
	Notice on data flow cancellation

[bookmark: _bookmark33][bookmark: _Toc8401018]5.2	Business Interfaces
	Business type
	Business
	Request interfaces / response interfaces
	Data Flow

	Login
	Login
	CFfexFtdcTraderApi:: ReqUserLogin
CFfexFtdcTraderSpi::OnRspUserLogin
	N/A

	
	Logout
	CFfexFtdcTraderApi::ReqUserLogout
CFfexFtdcTraderSpi::OnRspUserLogout
	Dialogue flow

	
	Modify user password
	CFfexFtdcTraderApi::ReqUserPasswordUpdate
CFfexFtdcTraderSpi::OnRspUserPasswordUpdate
	Dialogue flow

	Subscription
	Subscribe to topics
	CFfexFtdcTraderApi::ReqSubscribeTopic
CFfexFtdcTraderSpi::OnRspSubscribeTopic
	Dialogue flow

	
	Query topic
	CFfexFtdcMduserApi::ReqQryTopic
CFfexFtdcMduserSpi::OnRspQryTopic
	Query flow

	Trade
	Order insert
	CFfexFtdcTraderApi::ReqOrderInsert
CFfexFtdcTraderSpi::OnRspOrderInsert
	Dialogue flow

	
	Order action
	CFfexFtdcTraderApi::ReqOrderAction
CFfexFtdcTraderSpi::OnRspOrderAction
	Dialogue flow

	
	Combined order insert
	CFfexFtdcTraderApi::ReqCombOrderInsert
CFfexFtdcTraderSpi::OnRspCombOrderInsert
	Dialogue flow

	
	Quote insert
	CFfexFtdcTraderApi::ReqQuoteInsert
CFfexFtdcTraderSpi::OnRspQuoteInsert
	Dialogue flow

	
	Quote action
	CFfexFtdcTraderApi::ReqQuoteAction
CFfexFtdcTraderSpi::OnRspQuoteAction
	Dialogue flow

	
	Execution order insert
	CFfexFtdcTraderApi::ReqExecOrderInsert
CFfexFtdcTraderSpi::OnRspExecOrderInsert
	Dialogue flow

	
	Execution order action
	CFfexFtdcTraderApi::ReqExecOrderAction
CFfexFtdcTraderSpi::OnRspExecOrderAction
	Dialogue flow

	
	Application combination/split action
	CFfexFtdcTraderApi:: ReqMarginCombAction
CFfexFtdcTraderSpi:: OnRspMarginCombAction
	Dialogue flow

	Private return
	Trade return
	CFfexFtdcTraderSpi::OnRtnTrade
	Private flow

	
	Order return
	CFfexFtdcTraderSpi::OnRtnOrder
	Private flow

	
	Combined order return
	CFfexFtdcTraderSpi::OnRtnCombOrder
	Private flow

	
	Quote return
	CFfexFtdcTraderSpi::OnRtnQuote
	Private flow

	
	Execution order return
	CFfexFtdcTraderSpi::OnRtnExecOrder
	Private flow

	
	Order insert error return
	CFfexFtdcTraderSpi::OnErrRtnOrderInsert
	Private flow

	
	Order action error return
	CFfexFtdcTraderSpi::OnErrRtnOrderAction
	Private flow

	
	Combined order insert error return
	CFfexFtdcTraderSpi::OnErrRtnCombOrderInsert
	Private flow

	
	Quote insert error return
	CFfexFtdcTraderSpi::OnErrRtnQuoteInsert
	Private flow

	
	Quote action error return
	CFfexFtdcTraderSpi::OnErrRtnQuoteAction
	Private flow

	
	Execution order insert error return
	CFfexFtdcTraderSpi::OnErrRtnExecOrderInsert
	Private flow

	
	Execution order action error return
	CFfexFtdcTraderSpi::OnErrRtnExecOrderAction
	Private flow

	
	Application combination/ split return
	CFfexFtdcTraderSpi::OnRtnMarginCombAction
	Private flow

	Public notice
	Notice on instrument status
	CFfexFtdcTraderSpi::OnRtnInstrumentStatus
	Public flow

	
	Notice on increased instrument
	CFfexFtdcTraderSpi::OnRtnInsInstrument
	Public flow

	
	Notice on deleted instrument
	CFfexFtdcTraderSpi::OnRtnDelInstrument
	Public flow

	
	Notice on increased single-leg option in combined instrument
	CFfexFtdcTraderSpi::OnRtnInsCombinationLeg
	Public flow

	
	Notice on deleted single-leg option in combined instrument
	CFfexFtdcTraderSpi::OnRtnDelCombinationLeg
	Public flow

	
	Notice on alias definition
	CFfexFtdcTraderSpi::OnRtnAliasDefine
	Public flow

	
	Notice on bulletin
	CFfexFtdcTraderSpi::OnRtnBulletin
	Public flow

	
	Notice on instrument rule
	CFfexFtdcTraderSpi ::OnRtnMarginCombinationLeg
	Public flow

	Query
	Fund query
	CFfexFtdcTraderApi::ReqQryPartAccount
CFfexFtdcTraderSpi::OnRspQryPartAccount
	Query flow

	
	Order query
	CFfexFtdcTraderApi::ReqQryOrder
CFfexFtdcTraderSpi::OnRspQryOrder
	Query flow

	
	Combined order query
	CFfexFtdcTraderApi::ReqQryCombOrder
CFfexFtdcTraderSpi::OnRspQryCombOrder
	Query flow

	
	Quote query
	CFfexFtdcTraderApi::ReqQryQuote
CFfexFtdcTraderSpi::OnRspQryQuote
	Query flow

	
	Trade query
	CFfexFtdcTraderApi::ReqQryTrade
CFfexFtdcTraderSpi::OnRspQryTrade
	Query flow

	
	Client query
	CFfexFtdcTraderApi::ReqQryClient
CFfexFtdcTraderSpi::OnRspQryClient
	Query flow

	
	Member position query
	CFfexFtdcTraderApi::ReqQryPartPosition
CFfexFtdcTraderSpi::OnRspQryPartPosition
	Query flow

	
	Client position query
	CFfexFtdcTraderApi::ReqQryClientPosition
CFfexFtdcTraderSpi::OnRspQryClientPosition
	Query flow

	
	Instrument query
	CFfexFtdcTraderApi::ReqQryInstrument
CFfexFtdcTraderSpi::OnRspQryInstrument
	Query flow

	
	Instrument trading status query
	CFfexFtdcTraderApi::ReqQryInstrumentStatus
CFfexFtdcTraderSpi::OnRspQryInstrumentStatus
	Query flow

	
	Hedge volume query
	CFfexFtdcTraderApi::ReqQryHedgeVolume
CFfexFtdcTraderSpi::OnRspQryHedgeVolume
	Query flow

	
	Market data query
	CFfexFtdcTraderApi::ReqQryMarketData
CFfexFtdcTraderSpi::OnRspQryMarketData
	Query flow

	
	Bulletin query
	CFfexFtdcTraderApi::ReqQryBulletin
CFfexFtdcTraderSpi::OnRspQryBulletin
	Query flow

	
	Instrument price query
	CFfexFtdcTraderApi::ReqQryMBLMarketData
CFfexFtdcTraderSpi::OnRspQryMBLMarketData
	Query flow

	
	Combined position query
	CFfexFtdcTraderApi::ReqQryPartClientCombPosition
CFfexFtdcTraderSpi::OnRspQryPartClientCombPosition
	Query flow

	
	Single-leg position query
	CFfexFtdcTraderApi:: ReqQryPartClientLegPosition
CFfexFtdcTraderSpi:: OnRspQryPartClientLegPosition
	Query flow

[bookmark: _bookmark34][bookmark: _Toc8401019]5.3	Interfaces that is not opened in the current version
	Business type
	Business
	Request interfaces / response interfaces
	Status

	Trade
	Order insert
	CFfexFtdcTraderApi::ReqOrderInsert
CFfexFtdcTraderSpi::OnRspOrderInsert
	Partially open

	
	Order action
	CFfexFtdcTraderApi::ReqOrderAction
CFfexFtdcTraderSpi::OnRspOrderAction
	Partially open

	
	Combined order insert
	CFfexFtdcTraderApi::ReqCombOrderInsert
CFfexFtdcTraderSpi::OnRspCombOrderInsert
	Not open

	
	Execution order insert
	CFfexFtdcTraderApi::ReqExecOrderInsert
CFfexFtdcTraderSpi::OnRspExecOrderInsert
	Not open

	
	Execution order action
	CFfexFtdcTraderApi::ReqExecOrderAction
CFfexFtdcTraderSpi::OnRspExecOrderAction
	Not open

	Return
	Combined order return
	CFfexFtdcTraderSpi::OnRtnCombOrder
	Not open

	
	Execution order return
	CFfexFtdcTraderSpi::OnRtnExecOrder
	Not open

	
	Combined order insert error return
	CFfexFtdcTraderSpi::OnErrRtnCombOrderInsert
	Not open

	
	Execution order insert error return
	CFfexFtdcTraderSpi::OnErrRtnExecOrderInsert
	Not open

	
	Execution order action error return
	CFfexFtdcTraderSpi::OnErrRtnExecOrderAction
	Not open

	Public notice
	Notice on increased single-leg option in combined instrument
	CFfexFtdcTraderSpi::OnRtnInsCombinationLeg
	Not open

	
	Notice on deleted single-leg option in combined instrument
	CFfexFtdcTraderSpi::OnRtnDelCombinationLeg
	Not open

	Query
	Combined order query
	CFfexFtdcTraderApi::ReqQryCombOrder
CFfexFtdcTraderSpi::OnRspQryCombOrder
	Not open

[bookmark: _bookmark35][bookmark: _Toc8401020]Chapter 6	TraderAPI’s User Manual
[bookmark: _bookmark36][bookmark: _Toc8401021]6.1	CFfexFtdcTraderSpi Interface
CFfexFtdcTraderSpi implements the event notification interface. Users shall derive the CFfexFtdcTraderSpi interface and write event handling methods to handle events of interest.
[bookmark: _bookmark37][bookmark: _Toc8401022]6.1.1	OnFrontConnected method
This method will be called when the member system establishes a TCP virtual link (connection) with the trading front-end processors of the trading system. This connection is automatically established by the API.
Function prototype:
	void OnFrontConnected() ；

Note: Calling OnFrontConnected only indicates that the TCP connection has succeeded. Subsequent business actions can be performed only after logging in the member system. The method will not be called back in case of login failure.
[bookmark: _bookmark38][bookmark: _Toc8401023]6.1.2	OnFrontDisconnected method
This method will be called when the member system is disconnected from the TCP virtual link of the front-end processors of the trading system. When this happens, the API will automatically reconnect and the client may take no action. The address for automatic reconnection may be the original registered address, or other available communication addresses supported by the system, which is automatically selected by the program.
Function prototype:
	void OnFrontDisconnected (int nReason)

Parameter:
nReason: Reasons for disconnection
	0x1001 network reading failed
	0x1002 network writing failed
	0x2001 heartbeat receiving timeout
	0x2002 heartbeat sending failed
	0x2003 received an error info
[bookmark: _bookmark39][bookmark: _Toc8401024]6.1.3	OnHeartBeatWarning method
Heartbeat timeout warning. This method will be called when a message has not been received for a long time. The default timeout alarm period is set to 80 seconds. If SetHeartbeatTimeout(unsigned int timeout) is called to set the heartbeat timeout, the warning time is timeout/2.
Function prototype:
	void OnHeartBeatWarning(int nTimeLapse) ；

Parameter:
nTimeLapse: the time since the last message was received
[bookmark: _bookmark40][bookmark: _Toc8401025]6.1.4	OnPackageStart method
Notice on message callback start. When the API receives a message, this method will be called first, then each data field is called back, and finally the notice on message callback end is given.
Function prototype:
	void OnPackageStart (int nTopicID, int nSequenceNo);

Parameter:
nTopicID: the topic ID (such as private flow, public flow and market data flow).
nSequenceNo: the message sequence number.
[bookmark: _bookmark41][bookmark: _Toc8401026]6.1.5	OnPackageEnd method
Notice on the end of message callback. When the API receives a message, the notice on message callback start is called, then the each data field is called back, and this method is finally called.
Function prototype:
	void OnPackageEnd (int nTopicID, int nSequenceNo):

Parameter:
nTopicID: the topic ID (such as private flow, public flow and market data flow).
nSequenceNo: the message sequence number.
[bookmark: _Toc8401027]6.1.6	OnRspUserLogin method
When the client backend returns a response after the client makes a login request, the method will be called to notify the client whether the login is successful.
Function prototype:
	void OnRspUserLogin(
CFfexFtdcRspUserLoginField *pRspUserLogin,
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast) ；

Parameter:
pRspUserLogin: Returns the address of the user login information.
Structure of user login information:
	struct CFfexFtdcRspUserLoginField
{
///Trading day
TFfexFtdcDateType TradingDay;
///Login time
TFfexFtdcTimeType LoginTime;
///Maximum local order ID
TFfexFtdcOrderLocalIDType MaxOrderLocalID;
///User ID
TFfexFtdcUserIDType UserID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Trading system name
TFfexFtdcTradingSystemNameType TradingSystemName;
///Data center ID
TFfexFtdcDataCenterIDType DataCenterID;
///Current member private flow length
TFfexFtdcSequenceNoType PrivateFlowSize;
///Current trader private flow length
TFfexFtdcSequenceNoType UserFlowSize;
};
Note: If the member system maintains the retransmission sequence number itself, the returned TradingDay and DataCenterID should be saved to fill in the login request the next time you log in.

pRspInfo: Return the address of the user response information. Attention is needed that when there is continuous successful response data, it is possible to return NULL in the middle of the process rather than at the first time. The same rule applies below. When the error ID is 0, it indicates that the action is successful. The same rule applies below.
Structure of response information:

	struct CFfexFtdcRspInfoField{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};
Possible error:

	Error ID
	Error
	info 	Possible reason

	3
	Cannot find the member 	
	The member ID is incorrect

	45
	The settlement group’s initialization status is incorrect
	The trading system has not been initialized yet. Please try again later

	59
	Repeated login of user
	The user has already logged in

	60
	Incorrect username or password
	The user ID or password is incorrect

	62
	User is not active
	The trader is not allowed to log in by the trading system

	64
	User does not belong to this member
	The member ID is incorrect

	65
	Incorrect login IP address
	The computer requesting login does not have a legal IP address for the Exchange.

	100
	Incorrect user type
	The user requesting login is a non-trading user

nRequestID: Return the ID of the user login request, which is specified by the user when logging in.
bIsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401028]6.1.7	OnRspUserLogout method
When the member system sends a logout request and the trading backend returns a response, the method will be called to notify the member system whether the logout is successful.
Function prototype:
	void OnRspUserLogout(CFfexFtdcRspUserLogoutField *pRspUserLogout,
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)

Parameter:
pRspUserLogout: Returns the address of the user logout information.
Structure of user logout information:
	Struct CFfexFtdcRspUserLogoutField
{
///User ID
TFfexFtdcUserIDType UserID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
};

pRspInfo: Returns the address of the user response information.
Structure of response information:
	struct CFfexFtdcRspInfoField{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};
Possible error:

	Error ID
	Error info
	Possible reason

	66
	User has not logged in
	Not logged in yet

	67
	Did not log in as the user
	The trader logging out is not the one who logged in

	68
	Did not log in as the member
	The member logging out is not the one who logged in

nRequestID: Return the ID of the user logout request, which is specified by the user when logging out.
bIsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401029]6.1.8	OnRspUserPasswordUpdate method
Response to user password modification. This method will be called when the member system sends a user password modification order, and the trading system returns a response.
Function prototype:
	void OnRspUserPasswordUpdate(
CFfexFtdcUserPasswordUpdateField *pUserPasswordUpdate,
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)

Parameter:
pUserPasswordUpdate: The address directing to the user password modification structure, including the input data of the user password modification request.
User password modification structure:
	struct CFfexFtdcUserPasswordUpdateField
{
///User ID
TFfexFtdcUserIDType UserID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Old password
TFfexFtdcPasswordType OldPassword;
///New password
TFfexFtdcPasswordType NewPassword;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};
Possible error:

	Error ID
	Error info
	Possible reason

	58
	User does not match
	The trader requesting for changing the password is not the one who logged in

	60
	Incorrect username or password
	Incorrect original password

	66
	User has not logged in
	Not logged in yet.

	68
	Did not log in as the member
	The member ID requesting for changing the password is not the one who logged in

nRequestID: Return the ID of the user password modification request, which is specified by the user when the password is modified.
bIsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401030]6.1.9	OnRspSubscribeTopic method
Response to topic subscription. This method will be called when the trading system returns a response after the member system sends a topic subscription order.
Function prototype:
	void OnRspSubscribeTopic (
CFfexFtdcDisseminationField *pDissemination,
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast);

Parameter:
pDissemination: The address directing to the structure of topic subscription, including the topic to be subscribed to and the sequence number of the starting message. Structure of topic subscription:
	struct CFfexFtdcDisseminationField {
///Sequence series
TFfexFtdcSequenceSeriesType SequenceSeries;
///Sequence number
TFfexFtdcSequenceNoType SequenceNo;
};

pRspInfo: The address directing to the structure of response information. Structure of response information:
	struct CFfexFtdcRspInfoField {
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};
Possible error:

	Error ID
	Error info
	Possible reason

	66
	User has not logged in
	Not logged in yet

nRequestID: Return the ID of the topic subscription request, which is specified by the user when subscribing to the topic.
bIsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401031]6.1.10	OnRspQryTopic method
Response to topic query. The method will be called when the member system sends a topic query order and the trading system returns a response.
Function prototype:
	void OnRspSubscribeTopic (
CFfexFtdcDisseminationField *pDissemination,
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast);

Parameter:
pDissemination: The address directing to the structure of the queried topic, including the topic to be queried and the number of the topic messages. Structure of topic query:
	struct CFfexFtdcDisseminationField {
///Sequence series
TFfexFtdcSequenceSeriesType SequenceSeries;
///Sequence number
TFfexFtdcSequenceNoType SequenceNo;
};

pRspInfo: The address directing to the structure of response information. Structure of response information:
	struct CFfexFtdcRspInfoField {
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};
Possible error:

	Error ID
	Error info
	Possible reason

	66
	User has not logged in
	Not logged in yet

nRequestID: Returns the ID of the topic query request, which is specified by the user when subscribing to the topic.
bIsLast: Indicates whether this return is the last return for nRequestID.
[bookmark: _Toc8401032]6.1.11	OnRspError method
Notice on error in user request.
Function prototype:
	void OnRspError(
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)

Parameter:	
pRspInfo: Returns the address of the user response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};

nRequestID: Return the ID of the user action request, which is specified by the user when the action request is made.
bIsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401033]6.1.12	OnRspOrderInsert method
Order insert response. This method will be called when the trading backend returns a response after the order insert order is by the member system.
Function prototype:
	void OnRspOrderInsert(
CFfexFtdcInputOrderField *pInputOrder,
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast) ；

Parameter:
pInputOrder: The address directing to the order insert structure, including the input data when the order is submitted, and the order number returned by the trading system. Note: Some fields in the structure are different from what was inserted during order insertion. For suych fields, the trading system returns a null value.
Input order structure:
	struct CFfexFtdcInputOrderField
{
///Order ID, this field is returned by the trading system.
TFfexFtdcOrderSysIDType OrderSysID;
///Member ID, not used 1
TFfexFtdcParticipantIDType ParticipantID;
///Client ID, not used
TFfexFtdcClientIDType ClientID;
///User ID, not used
TFfexFtdcUserIDType UserID;
///Instrument ID, not used
TFfexFtdcInstrumentIDType InstrumentID;
///Order price condition, not used
TFfexFtdcOrderPriceTypeType OrderPriceType;
///Direction, not used
TFfexFtdcDirectionType Direction;
///Combination offset flag, not used
TFfexFtdcCombOffsetFlagType CombOffsetFlag;
///Combination speculative hedge flag, unused
TFfexFtdcCombHedgeFlagType CombHedgeFlag;
///Price, not used
TFfexFtdcPriceType LimitPrice;
///Volume, not used
TFfexFtdcVolumeType VolumeTotalOriginal;
///Validity type, not used
TFfexFtdcTimeConditionType TimeCondition;
///GTD date, not used
TFfexFtdcDateType GTDDate;
///Volume type, not used
TFfexFtdcVolumeConditionType VolumeCondition;
///Minimum volume, not used
TFfexFtdcVolumeType MinVolume;
/// Contingent condition, not used
TFfexFtdcContingentConditionType ContingentCondition;
///Stop price, not used
TFfexFtdcPriceType StopPrice;
///Forced close reason, not used
TFfexFtdcForceCloseReasonType ForceCloseReason;
///Local order ID
TFfexFtdcOrderLocalIDType OrderLocalID;
///Automatic suspend flag, not used
TFfexFtdcBoolType IsAutoSuspend;
///Business unit, not used
TFfexFtdcBusinessUnitType BusinessUnit;
};

1	In order to maintain compatibility with subsequent versions of the V1.5 trading system, this data item is retained, but its content is meaningless. The member system should not have any assumptions about its content. In the implementation of the underlying communication of the network, the TraderAPI basically offsets the communication bandwidth overhead by compressing the algorithm, but maintains the compatibility and scalability of the protocol and TraderAPI. The same rule applies below.
pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};
Possible error:

	Error ID
	Error info
	Possible reason

	2
	Cannot find the instrument 	
	Cannot find the instrument in the order

	3
	Cannot find the member
	Cannot find the member in the order.

	4
	Cannot find the client
	Cannot find the client in the order

	6
	Order field error
	The field value in the order is illegal (the enumerated value is out of bounds) or the reason for forced close was set in a non-forced close order.

	12
	Repeated order
	Repeated local order ID is found in the order

	15
	The client did not open an account with the member
	The client in the order did not open an account with the designated member.

	16
	IOC is required to be in the continuous trading stage
	Attempting to insert an IOC order during a non-continuous trading stage

	17
	GFA needs to be in the call auction stage
	Attempting to insert the GFA's order in the call auction stage

	18
	Market price order cannot be queued
	The time condition of the market order is not IOC

	19
	The volume constraint should be on the IOC order
	The volume constraint is not an arbitrary number, and the time condition of the order is not IOC.

	20
	GTD order expired
	The GTD date in the GTD order has expired

	21
	The minimum volume is greater than the number of orders.
	The order has a minimum volume condition. The minimum volume is greater than the number of orders.

	22
	The Exchange’s data is not synchronized
	The trading system has not been initialized yet. Please try again later.

	23
	The settlement group's data is not synchronized.
	The trading system has not been initialized yet. Please try again later.

	26
	The current status prohibits this action
	The instrument status is not continuous trade, call auction order or call auction balance

	31
	Insufficient client position when closing
	When a closing order is issued, the client's position is insufficient.

	32
	Exceeded client position limit
	When an opening order is issued, the client's speculative position limit is exceeded

	34
	Exceeded member position limit
	When an opening order is issued, the member's position limit is exceeded

	35
	Cannot find the account
	Cannot find the fund account used for the order

	36
	Insufficient funds
	There are not enough funds in the fund account

	37
	Illegal volume
	The number of orders is not a positive integer multiple of the required minimum volume, or exceeds the maximum order volume

	48
	Price is not a multiple of the smallest unit
	The price is not an integer multiple of the minimum unit of variation of the instrument

	49
	Price exceeds limit up
	The price in the order is higher than the instrument's limit up

	50
	Price falls below the limit down
	The price in the order is lower than the instrument's limit down

	51
	No trading rights
	The member, the client, or the trader has no trading rights for the specified instrument

	52
	Can only close the position
	The member, the client, or the trader has only the right to close the position for the specified instrument

	53
	No such trading role
	The member does not have the corresponding trading role for the client on the specified instrument

	57	
	Cannot operate for other members
	The trader operates for other member who is not his or her own.

	58
	User does not match
	The trader in the order is not the one who logged in.

	66
	User has not logged in
	Not logged in yet

	78
	No date specified in GTD order
	The GTD order does not specify a GTD date.

	79
	Unsupported order type
	The Exchange does not support such order types

	83
	Stop loss orders are only used for continuous trading
	Attempting to issue a stop loss order during a non-continuous trading stage

	84
	The stop loss order needs to be IOC or GFD
	The time condition of stop loss order is neither IOC nor GFD.

	95
	The stop loss order must state the stop price
	The stop loss order do not specify the stop price

	96
	Insufficient hedge volume
	When the hedge order is issued, the client's hedge volume is insufficient.

	103
	The current hedge position cannot be closed
	The hedge position shall not be closed using the current closing order

	114
	The best price order cannot be queued
	The time condition of the best price order is not IOC

nRequestID: Return the ID of the order insert action request, which is specified by the user when the order is inserted.
bIsLast: Indicate whether this return is the last return for nRequestID.
Note:
CFfexFtdcRspInfoField.ErrorID is zero (meaning the order is inserted successfully). In the CFfexFtdcInputOrderField *pInputOrder, only the order number (the number given by the trading system) and the local order number are meaningful, used for the association between the trading system and the member system. The specific content of the order needs to be obtained from the private flow.
See the OnRtnOrder method for a description of each data field in CFfexFtdcInputOrderField.
[bookmark: _Toc8401034]6.1.13	OnRspOrderAction method
The current version does not open the order modification function.
Order action response. The order actions include the revocation, suspension, activation, and modification of an order. This method will be called when the trading backend returns a response after the client sends an order action order.
Function prototype:
	void OnRspOrderAction(
CFfexFtdcOrderActionField *pOrderAction,
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast);

Parameter:
pOrderAction: The address directing to the order action structure, including the input data for submitting the order action, and the order number returned by the trading system.

Order action structure:
	struct CFfexFtdcOrderActionField
{
///Order ID, this field is returned by the trading system.
TFfexFtdcOrderSysIDType OrderSysID;
///Local order ID
TFfexFtdcOrderLocalIDType OrderLocalID;
///Order action flag
TFfexFtdcActionFlagType ActionFlag;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Price, unused reserved field, whose value is null
TFfexFtdcPriceType LimitPrice;
///Volume change, unused reserved field, whose value is null
TFfexFtdcVolumeType VolumeChange;
///Action local ID
TFfexFtdcOrderLocalIDType ActionLocalID;
///Business unit, unused reserved field, whose value is null
TFfexFtdcBusinessUnitType BusinessUnit;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};
Possible error:

	Error ID
	Error info
	Possible reason

	3
	Cannot find the member
	Cannot find the member in the order action

	4
	Cannot find the client
	Cannot find the client in the order action

	8
	Order action field error 	
	The field value in the order action is illegal (the enumerated value is out of bounds)

	15
	The client did not open an account with the member
	The client did not open an account with the designated member.

	22
	The Exchange’s data is not synchronized
	The trading system has not been initialized yet and please try again later

	23
	The settlement group’s data is not synchronized
	The trading system has not been initialized yet and please try again later

	24
	Cannot find the order
	The order to be operated cannot be found.

	26
	The current status prohibits this action
	For activation, the instrument status is not continuous trade, call auction order or call auction balance
For other actions, the instrument status is not continuous trade or call auction order

	28
	The order has been fully filled
	The order has been fully filled

	29
	The order has been revoked
	The order has been revoked

	32 	
	Exceeded client position limit
	When modifying the order, the client's speculative position limit is exceeded

	34 	
	Exceeded member position limit
	When modifying the order, the member's speculative position limit is exceeded

	35
	Cannot find the account
	Cannot find the fund account that should be used

	36
	Insufficient funds
	There are not enough funds in the fund account

	37
	Illegal volume
	After modified, the number of orders is not a positive integer multiple of the required minimum volume, or exceeds the maximum order volume

	48
	Price is not a multiple of the smallest unit
	After modified, the price is not an integer multiple of the minimum unit of variation of the instrument

	49
	Price exceeds limit up
	After modified, the price in the order is higher than the instrument's limit up

	50
	Price falls below the limit down 	
	The price in the order is lower than the instrument's limit down

	57 	
	Cannot operate for other members
	The trader operates for other member who is not his or her own

	58 	
	User does not match
	The trader acting is not the one who logged in.

	66
	User has not logged in
	Not logged in yet

	76
	The order has been suspended
	When suspending the order, it is found that the order has been suspended

	77
	The order has been activated
	When activating the order, it is found that the order has been activated

	96
	Insufficient hedge volume
	When the order is issued after modified, the client's hedge volume is insufficient

	97
	Repeated action
	The local action ID is repeated when performing an order action

	99
	Cannot operate for other users	
	Unauthorized user attempts to operate the order inserted by other users of the same member.

nRequestID: Return the ID of the user's order action request, which is specified by the user when performing the order action.
blsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401035][bookmark: bookmark0]6.1.14	OnRspQuotelnsert method
Quote insert response. This method will be called when the trading system returns a response after the member system sends a quote insert order.
[bookmark: bookmark1]Function prototype:
	void OnRspQuoteInsert(
CFfexFtdcInputQuoteField *pInputQuote,
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)

Parameter:
plnputQuote: The address directing to the input quote structure, including the input data for the quote insert action, and the quote number returned by the trading system.
Input quote structure:
	struct CFfexFtdcInputQuoteField
{
///Quote ID, this field is returned by the trading backend.
TFfexFtdcQuoteSysIDType QuoteSysID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Bid volume
TFfexFtdcVolumeType BidVolume;
///Ask volume
TFfexFtdcVolumeType AskVolume;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Local quote ID
TFfexFtdcQuoteLocalIDType QuoteLocalID;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
///Bid combination offset flag
TFfexFtdcCombOffsetFlagType BidCombOffsetFlag;
///Bid combination hedge flag
TFfexFtdcCombHedgeFlagType BidCombHedgeFlag;
///Bid price
TFfexFtdcPriceType BidPrice;
///Ask combination offset flag
TFfexFtdcCombOffsetFlagType AskCombOffsetFlag;
///Ask combination hedge flag
TFfexFtdcCombHedgeFlagType AskCombHedgeFlag;
///Ask price
TFfexFtdcPriceType AskPrice;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};
Possible error:
Error ID 			 Error info 			 Possible reason
2 	Cannot find the instrument 					Cannot find the instrument in the quote
3 	Cannot find the member 					Cannot find the member in the quote
4 	Cannot find the client 					Cannot find the client in the quote
7 	Quote field error 				The field value in the quote is illegal (the enumerated value is out of bounds)
13 	Repeated quote 					The local quote ID in the quote is repeated
15 	The client did not open an account with the member 		The client in the quote did not open an account with the designated member
22 	The Exchange’s data is not synchronized 			The trading system has not been initialized yet and please try again later
23 	The settlement group’s data is not synchronized 			The trading system has not been initialized yet and please try again later
26 	The current status prohibits this action 		The instrument status is not continuous trade, call auction
 order or call auction balance
31 	Insufficient client position when closing 			The client position is insufficient
32 	Exceeded client position limit 				The client's speculative position limit is exceeded due to this quote
34 	Exceeded member position limit 				The member's speculative position limit is exceeded due to this quote
35 	Cannot find the account 				Cannot find the account used for the quote
36 	Insufficient funds 					There are not enough funds in the account
37 	Illegal volume 				The volume is not a positive integer multiple of the minimum order
 			 			 		volume, or exceeds the maximum order volume
48 	Price is not a multiple of the smallest unit 		The price is not an integer multiple of the minimum unit of variation of the instrument
49 	Price exceeds limit up 			The price is higher than the instrument's limit up
50 	Price falls below the limit down 			The price is lower than the instrument's limit down
51 	No trading rights 				The member, the client or the trader
 			 			 		 has no trading rights for specified instrument.
52 	Can only close the position 					The member, the client or the trader The member, the client, or the trader has only the right to close the position
 			 			 		 for the specified instrument
53 	No such trading role 			The member does not have the corresponding trading role for the client on the specified instrument
57 	Cannot operate for other members 			The trader operates for other member who is not his or her own
58 	User does not match 			The trader in the quote is not the one who logged in
66 	User has not logged in 			Not logged in yet.
79 	Unsupported order type 			The Exchange does not support such order type
96 	Insufficient hedge volume 				 When the hedge order is issued, the client's hedge volume is insufficient
103 	The current hedge position cannot be closed 		The hedge position shall not be closed using the quoted price of the position
121 	No quote permission 				The client does not have the right to quote as a market maker

nRequestID: Returns the ID of the user's quote insert action request, which is specified by the user during the quote is inserted.
blsLast: Indicates whether this return is the last return for nRequestID.
[bookmark: _Toc8401036]6.1.15	OnRspQuoteAction method
This method is not open in the current version.
Quote action response. Including the revocation, suspension, activation, and modification of the quote. This method will be called when the trading system returns a response after the member system sends a quote action order.
Function prototype:
	void OnRspQuoteAction(
CFfexFtdcQuoteActionField *pQuoteAction,
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast);

Parameter:
pQuoteAction: The address directing to the quote action structure, including the input data of the quote action request and the quote number returned by the trading system.
Quote action structure:
	struct CFfexFtdcQuoteActionField
{
///Quote ID, this field is returned by the trading system.
TFfexFtdcQuoteSysIDType QuoteSysID;
///Local quote ID
TShfeFtdcOrderLocalIDType QuoteLocalID;
///Order action flag
TFfexFtdcActionFlagType ActionFlag;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Action local ID
TFfexFtdcOrderLocalIDType ActionLocalID;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};
Possible error:
Error ID 		Error info 		Possible reason
3 	Cannot find the member 					Cannot find the member in the action
4 	Cannot find the client 					Cannot find the client in the action
8 	Order action field error 			The field value in the order action is illegal (the enumerated value is out of bounds)
15 	 The client did not open an account with the member 		 The client did not open an account with the designated member.
22 	The Exchange’s data is not synchronized 			The trading system has not been initialized yet. Please try again later
23 	The settlement group’s data is not synchronized 			The trading system has not been initialized yet and please try again later
25 	Cannot find the quote 				The quote to be operated cannot be found
26 	The current status prohibits this action		 For activation, the instrument status is not continuous
 				 				 trade, call auction order or call auction balance
 				 				 For other actions, the trading status is not continuous trade or
 				 				 call auction order
28 	The order has been fully filled 		 	The order derived from quote has been fully filled
29 	The order has been revoked 		 		The order derived from quote has been revoked
35 	Cannot find the account 		 			Cannot find the account that should be used
36 	Insufficient funds 		 			There are not enough funds in the account
57 	Cannot operate for other members 		 The trader operates for other member who is not his or her own
58 	User does not match 		 		The trader in the quote is not the one who logged in
66 	User has not logged in 		 		Not logged in yet.
70 	Quote has been cancelled 		 	The quote has been cancelled
97 	Repeated action 		 			The local action number for quote action is repeated
99 	Cannot operate for other users 		 Unauthorized trader attempts to operate the order inserted by other traders of the member

nRequestID: Return the ID of the user's quote action request, which is specified by the user during the quote action.
blsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401037][bookmark: bookmark2]6.1.16	OnRspExecOrderlnsert method
This method is not open in the current version.
Response to execution order insert. This method will be called when the trading system returns a response after the member system executes an order insert.
[bookmark: bookmark3]Function prototype:
	void OnRspExecOrderInsert(
CFfexFtdcInputExecOrderField *pInputExecOrder,
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID, bool bIsLast);

[bookmark: bookmark4]Parameter:
plnputExecOrder: The address directing to the order insert structure.
Input execution order structure:
	struct CFfexFtdcInputExecOrderField
{
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Local execution order ID
TFfexFtdcOrderLocalIDType ExecOrderLocalID;
///Volume
TFfexFtdcVolumeType Volume;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
};

pRspInfo: The address directing to the response information structure.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};
Possible error:
Error ID 			 Error info 		 Possible reason
2 	Cannot find the instrument 					Cannot find the instrument in the execution order
3 	Cannot find the member 			 		Cannot find the member in the execution order
4 	Cannot find the client 					Cannot find the client in the execution order
15 	The client did not open an account with the member 		The client in the execution order did not open an account with the designated member
22 	The Exchange’s data is not synchronized 			The trading system has not been initialized yet. Please try again later
23 	The settlement group’s data is not synchronized 			The trading system has not been initialized yet and please try again later
26 	The current status prohibits this action 		The instrument status is the closing status
51 	No trading rights 				The member, the client or the trader
								 has no trading rights for specified instrument.
53 	No such trading role			 The member does not have the corresponding trading role for the client on the specified instrument
57 	Cannot operate for other members 			The trader operates for other member who is not his or her own
58 	User does not match 			 		The trader in the execution order is not the one who logged in
66 	User has not logged in 				Not logged in yet.
79 	Unsupported order type 			The Exchange does not support such order type
89 	Execution order field error 			The field value in the execution order is illegal (the enumerated value is out of bounds)
91 	Repeated execution order 				The local execution order ID in the execution order is repeated
94 	Execution order can only be used on options 		The instrument in the execution order is a non-option instrument

nRequestID: Return the ID of the execution order insert request, which is specified by the user when performing the order insert.
blsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401038][bookmark: bookmark5]6.1.17	OnRspExecOrderAction method
This method is not open in the current version.
Response to execution order action. This method will be called when the transaction returns a response after the client end performs an execution order action.
[bookmark: bookmark6]Function prototype:
	void OnRspExecOrderAction(
CFfexFtdcExecOrderActionField *pExecOrderAction,
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast);

[bookmark: bookmark7]Parameter:
plnputExecAction: The address directing to the order action structure.
Order action structure:
	struct CFfexFtdcExecOrderActionField
{
///Execution order ID
TFfexFtdcExecOrderSysIDType ExecOrderSysID;
///Local execution order ID
TFfexFtdcOrderLocalIDType ExecOrderLocalID;
///Order action flag
TFfexFtdcActionFlagType ActionFlag;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Action local ID
TFfexFtdcOrderLocalIDType ActionLocalID;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};
Possible error:
Error ID 		 Error info 		 Possible reason
2 	Cannot find the instrument 					Cannot find the instrument in the execution order
3 	Cannot find the member 					Cannot find the member in the execution order
4 	Cannot find the client 					Cannot find the client in the execution order
15 	The client did not open an account with the member 		The client in the execution order did not open an account with the designated member
22 	The Exchange’s data is not synchronized 			The trading system has not been initialized yet and please try again later
23 	The settlement group’s data is not synchronized 			The trading system has not been initialized yet and please try again later
26 	The current status prohibits this action 		The instrument status is the closing status
51 	No trading rights 				The member, the client or the trader
								 has no trading rights for specified instrument.
53 	No such trading role 			The member does not have the corresponding trading role for the client on the specified instrument
57 	Cannot operate for other members 			The trader operates for other member who is not his or her own
58 	User does not match 			 		The trader in the execution order is not the one who logged in
66 	 User has not logged in 				 Not logged in yet
79 	Unsupported order type 			The Exchange does not support such order type
90 	Execution order action field error 		The field value in the execution action is illegal (the enumerated value is out of bounds)
92 	Execution order has been canceled 			The execution order to be operated has been cancelled
93 	Cannot find the execution order 				The execution order to be operated is not found
97 	Repeated action 					The local action number of the execution order action is repeated

nRequestID: Return the ID of the execution order action request specified by the user when executing the order action.
blsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401039]6.1.18	OnRspQryPartAccount method
Response to member account query. This method will be called when the client returns a response after the client sends a member account query order.
[bookmark: bookmark8]Function prototype:
	void OnRspQryPartAccount(
CFfexFtdcRspPartAccountField *pRspPartAccount,
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)

[bookmark: bookmark9]Parameter:
pRspPartAccount: The address directing to the member accounts response structure.
Member account response structure:
	struct CFfexFtdcRspPartAccountField
{
///Trading day
TFfexFtdcDateType TradingDay;
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Settlement ID
TFfexFtdcSettlementIDType SettlementID;
///Previous balance
TFfexFtdcMoneyType PreBalance;
///Current margin
TFfexFtdcMoneyType CurrMargin;
///Close profit
TFfexFtdcMoneyType CloseProfit;
///Income and expense of option premium
TFfexFtdcMoneyType Premium;
///Deposit amount
TFfexFtdcMoneyType Deposit;
///Withdrawal amount
TFfexFtdcMoneyType Withdraw;
///Balance
TFfexFtdcMoneyType Balance;
///Available fund
TFfexFtdcMoneyType Available;
///Account ID
TFfexFtdcAccountIDType AccountID;
///Frozen margin
TFfexFtdcMoneyType FrozenMargin;
///Frozen premium
TFfexFtdcMoneyType FrozenPremium;
///Basic reserve
TFfexFtdcMoneyType BaseReserve;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};
Possible error:
Error ID 		 Error info 		 Possible reason
80 	User does not have this right 					The information of this user can only be queried
57 	Cannot operate for other members 			The information of other users cannot be queried

nRequestID: Return the ID of the member account query request, which is specified by the user when performing the account query.
blsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401040][bookmark: bookmark10]6.1.19	OnRspQryOrder method
Order query request. This method will be called when the trading system returns a response after the member system sends an order query order.
[bookmark: bookmark11]Function prototype:
	void OnRspQryOrder(
CFfexFtdcOrderField *pOrder,
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast);

[bookmark: bookmark12]Parameter:
pOrder: The address directing to the order information structure. Order information structure:
	struct CFfexFtdcOrderField
{
///Trading day
TFfexFtdcDateType TradingDay;
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Settlement ID
TFfexFtdcSettlementIDType SettlementID;
///Order ID
TFfexFtdcOrderSysIDType OrderSysID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Order price condition
TFfexFtdcOrderPriceTypeType OrderPriceType;
///Direction
TFfexFtdcDirectionType Direction;
///combination offset flag
TFfexFtdcCombOffsetFlagType CombOffsetFlag;
/// Combination speculative hedge flag
TFfexFtdcCombHedgeFlagType CombHedgeFlag;
///Price
TFfexFtdcPriceType LimitPrice;
///Volume
TFfexFtdcVolumeType VolumeTotalOriginal;
///Validity type
TFfexFtdcTimeConditionType TimeCondition;
///GTD date, not used
TFfexFtdcDateType GTDDate;
///Volume type
TFfexFtdcVolumeConditionType VolumeCondition;
///Minimum volume
TFfexFtdcVolumeType MinVolume;
///Contingent condition
TFfexFtdcContingentConditionType ContingentCondition;
///Stop price, not used
TFfexFtdcPriceType StopPrice;
///Forced close reason
TFfexFtdcForceCloseReasonType ForceCloseReason;
///Local order ID
TFfexFtdcOrderLocalIDType OrderLocalID;
///Automatic suspend flag
TFfexFtdcBoolType IsAutoSuspend;
///Order source
TFfexFtdcOrderSourceType OrderSource;
///Order status
TFfexFtdcOrderStatusType OrderStatus;
///Order type
TFfexFtdcOrderTypeType OrderType;
///Volume traded today
TFfexFtdcVolumeType VolumeTraded;
///Remaining volume
TFfexFtdcVolumeType VolumeTotal;
///Order date
TFfexFtdcDateType InsertDate;
///Insert time
TFfexFtdcTimeType InsertTime;
///Active time
TFfexFtdcTimeType ActiveTime;
///Suspend time
TFfexFtdcTimeType SuspendTime;
///Update time
TFfexFtdcTimeType UpdateTime;
///Cancel time
TFfexFtdcTimeType CancelTime;
///Update user ID
TFfexFtdcUserIDType ActiveUserID;
///Priority, not used
TFfexFtdcPriorityType Priority;
///Time sort ID, not used
TFfexFtdcTimeSortIDType TimeSortID;
///Settlement member ID, not used
TFfexFtdcParticipantIDType ClearingPartID;
///Business unit, not used
TFfexFtdcBusinessUnitType BusinessUnit;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};
Possible error:
Error ID 		 Error info 		 Possible reason
80 	User does not have this right 					The information of this user can only be queried
57 	Cannot operate for other members 				The information of other users cannot be queried

nRequestID: Return the ID of the user's order query request, which is specified by the user when performing the order query.
blsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401041][bookmark: bookmark13]6.1.20	OnRspQryQuote method
This method is not open in the current version.
Response to quote query. This method will be called when the trading system returns a response after the member system sends a quote query order.
[bookmark: bookmark14]Function prototype:
	void OnRspQryQuote(
CFfexFtdcQuoteField *pQuote,
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast) ；

[bookmark: bookmark15]Parameter:
pQuote: The address directing to the structure of the quote information. Quote information structure:
	struct CFfexFtdcQuoteField
{
///Trading day
TFfexFtdcDateType TradingDay;
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Settlement ID
TFfexFtdcSettlementIDType SettlementID;
///Order number
TFfexFtdcQuoteSysIDType QuoteSysID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Volume
TFfexFtdcVolumeType Volume;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Local quote ID
TFfexFtdcQuoteLocalIDType QuoteLocalID;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
///Bid combination offset flag
TFfexFtdcCombOffsetFlagType BidCombOffsetFlag;
///Bid combination hedge flag
TFfexFtdcCombHedgeFlagType BidCombHedgeFlag;
///Bid price
TFfexFtdcPriceType BidPrice;
///Ask combination offset flag
TFfexFtdcCombOffsetFlagType AskCombOffsetFlag;
///Ask combination hedge flag
TFfexFtdcCombHedgeFlagType AskCombHedgeFlag;
///Ask price
TFfexFtdcPriceType AskPrice;
///Insert time
TFfexFtdcTimeType InsertTime;
///Cancel time
TFfexFtdcTimeType CancelTime;
///Trade time
TFfexFtdcTimeType TradeTime;
///Bid order ID
TFfexFtdcOrderSysIDType BidOrderSysID;
///Ask order ID
TFfexFtdcOrderSysIDType AskOrderSysID;
///Settlement member ID
TFfexFtdcParticipantIDType ClearingPartID;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};
Possible error:
Error ID 		 Error info 		 Possible reason
80 	User does not have this right 					The information of this user can only be queried
57 	Cannot operate for other members 				The information of other users cannot be queried

nRequestID: Returns the ID of the user's quote query request, which is specified by the user when performing the quote query.
blsLast: Indicates whether this return is the last return for nRequestID.
[bookmark: _Toc8401042][bookmark: bookmark16]6.1.21	OnRspQryTrade method
Response to trade query. This method will be called when the trading system returns a response after the member system sends a trade query order.
[bookmark: bookmark17]Function prototype:
	void OnRspQryTrade(
CFfexFtdcTradeField *pTrade,
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast) ；

[bookmark: bookmark18]Parameter:
pTrade: The address directing to the structure of the trade information.
Trade information structure:
	struct CFfexFtdcTradeField
{
///Trading day
TFfexFtdcDateType TradingDay;
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Settlement ID
TFfexFtdcSettlementIDType SettlementID;
///Trade ID
TFfexFtdcTradeIDType TradeID;
///Direction
TFfexFtdcDirectionType Direction;
///Order ID
TFfexFtdcOrderSysIDType OrderSysID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///Trading role
TFfexFtdcTradingRoleType TradingRole;
///Account ID
TFfexFtdcAccountIDType AccountID;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Offset flag
TFfexFtdcOffsetFlagType OffsetFlag;
///Speculative hedge flag
TFfexFtdcHedgeFlagType HedgeFlag;
///Price
TFfexFtdcPriceType Price;
///Volume
TFfexFtdcVolumeType Volume;
///Trade time
TFfexFtdcTimeType TradeTime;
///Trade type
TFfexFtdcTradeTypeType TradeType;
///Price source
TFfexFtdcPriceSourceType PriceSource;
///User ID
TFfexFtdcUserIDType UserID;
///Local order ID
TFfexFtdcOrderLocalIDType OrderLocalID;
///Settlement member ID
TFfexFtdcParticipantIDType ClearingPartID;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};
Possible error:
Error ID 		 Error info 		 Possible reason
80 	User does not have this right 					The information of this user can only be queried
57 	Cannot operate for other members 				The information of other users cannot be queried

nRequestID: Return the ID of the user's trade request, which is specified by the user when performing the trade query.
blsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401043][bookmark: bookmark19]6.1.22	OnRspForQuote method
Response to quote request. This method will be called when the trading system returns a response after the member system sends a query request.
[bookmark: bookmark20]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image35.png]
[bookmark: bookmark21]Parameter:
plnputReqForQuote: The address directing to the inquiry information structure.
Inquiry information structure:
	struct CFfexFtdcInputReqForQuoteField
{
///Request for quote ID
TFfexFtdcQuoteSysIDType ReqForQuoteID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Trading day
TFfexFtdcTradingDayType TradingDay;
///Request for quote time
TFfexFtdcTimeType ReqForQuoteTime;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};
Possible error:
Error ID 		 Error info 		 Possible reason
2 	Cannot find the instrument 					 No request for quote instrument exist
26 	The current status prohibits this action 		 The request for quote can only be initiated when the instrument status is continuous trade
57 	Cannot operate for other members 			It is unable to request for quote for other members
123 	The request for quote field cannot be empty 		 The client ID must be filled in for a request for quote

nRequestID: Return the ID of the user's trade request, which is specified by the user when performing the trade query.
blsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401044][bookmark: bookmark22]6.1.23	OnRspQryClient method
Response to member client’s query. This method will be called when the member system returns a response after the member system sends a member client’s query order.
[bookmark: bookmark23]Function prototype:
	void OnRspQryClient(
CFfexFtdcRspClientField*pClient,
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)

[bookmark: bookmark24]Parameter:
pClient: The address directing to the client information structure.
Client information structure:
	struct CFfexFtdcRspClientField
{
///Client ID
TFfexFtdcClientIDType ClientID;
///Client name
TFfexFtdcPartyNameType ClientName;
///Identified card type
TFfexFtdcIdCardTypeType IdentifiedCardType;
///Original identified card No.
TFfexFtdcIdentifiedCardNoV1Type UseLess;
///Trading role
TFfexFtdcTradingRoleType TradingRole;
///Client type
TFfexFtdcClientTypeType ClientType;
///Is active or not
TFfexFtdcBoolType IsActive;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Identified card No.
TFfexFtdcIdentifiedCardNoType IdentifiedCardNo;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};
Possible error:
Error ID 			 Error info 		 Possible reason
80 	User does not have this right 				The information of this user can only be queried
57 	Cannot operate for other members 			The information of other users cannot be queried

nRequestID: Return the ID of the member client’s query request, which is specified by the user when performing the member client’s query.
blsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401045][bookmark: bookmark25]6.1.24	OnRspQryPartPosition method
Response to member position query. This method will be called when the trading system returns a response after the member system sends a member position query order.
[bookmark: bookmark26]Function prototype:
	void OnRspQryPartPosition(
CFfexFtdcRspPartPositionField *pRspPartPosition,
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast)

[bookmark: bookmark27]Parameter:
pRspPartPosition: The address directing to the member position response structure.
Member position response structure:
	struct CFfexFtdcRspPartPositionField
{
///Trading day
TFfexFtdcDateType TradingDay;
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Settlement ID
TFfexFtdcSettlementIDType SettlementID;
///Speculative hedge flag
TFfexFtdcHedgeFlagType HedgeFlag;
///Position direction
TFfexFtdcPosiDirectionType PosiDirection;
///Yesterday position
TFfexFtdcVolumeType YdPosition;
///Position today
TFfexFtdcVolumeType Position;
///Long frozen
TFfexFtdcVolumeType LongFrozen;
///Short frozen
TFfexFtdcVolumeType ShortFrozen;
///Yesterday long frozen
TFfexFtdcVolumeType YdLongFrozen;
///Yesterday short frozen
TFfexFtdcVolumeType YdShortFrozen;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Trading role
TFfexFtdcTradingRoleType TradingRole;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};
Possible error:
Error ID 			 Error info 		 Possible reason
80 	User does not have this right 				The information of this user can only be queried
57 	Cannot operate for other members 			The information of other users cannot be queried

nRequestID: Return the ID of the member position query request, which is specified by the user when performing the member position query.
blsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401046][bookmark: bookmark28]6.1.25	OnRspQryClientPosition method
Response to client position query. This method will be called when the member system returns a response after the member system sends a client position query order.
[bookmark: bookmark29]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image47.png]
[bookmark: bookmark30]Parameter:
pRspClientPosition: The address directing to the client position response structure.
Client position response structure:
	struct CFfexFtdcRspClientPositionField
{
///Trading day
TFfexFtdcDateType TradingDay;
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Settlement ID
TFfexFtdcSettlementIDType SettlementID;
///Speculative hedge flag
TFfexFtdcHedgeFlagType HedgeFlag;
///Position direction
TFfexFtdcPosiDirectionType PosiDirection;
///Yesterday position
TFfexFtdcVolumeType YdPosition;
///Position today
TFfexFtdcVolumeType Position;
///Long frozen
TFfexFtdcVolumeType LongFrozen;
///Short frozen
TFfexFtdcVolumeType ShortFrozen;
///Yesterday long frozen
TFfexFtdcVolumeType YdLongFrozen;
///Yesterday short frozen
TFfexFtdcVolumeType YdShortFrozen;
///Buy trade volume
TFfexFtdcVolumeType BuyTradeVolume;
///Sell trade volume
TFfexFtdcVolumeType SellTradeVolume;
///Position cost
TFfexFtdcMoneyType PositionCost;
///Yesterday position cost
TFfexFtdcMoneyType YdPositionCost;
///Used margin
TFfexFtdcMoneyType UseMargin;
///Frozen margin
TFfexFtdcMoneyType FrozenMargin;
///Long frozen margin
TFfexFtdcMoneyType LongFrozenMargin;
///Short frozen margin
TFfexFtdcMoneyType ShortFrozenMargin;
///Frozen premium
TFfexFtdcMoneyType FrozenPremium;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};
Possible error:
Error ID 			 Error info 		 Possible reason
80 	User does not have this right 				The information of this user can only be queried
57 	Cannot operate for other members 			The information of other users cannot be queried

nRequestID: Return the ID of the client position query request, which is specified by the user when performing the client position query.
blsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401047][bookmark: bookmark31]6.1.26	OnRspQrylnstrument method
Response to instrument query. This method will be called when the trading system returns a response after the member system sends an instrument query order.
[bookmark: bookmark32]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image51.png]
Parameter:
pRspInstrument: The address directing to the instrument structure. The yellow highlight field is deprecated and the return value is meaningless for business reference.
Instrument structure:
	struct CFfexFtdcRspInstrumentField
{
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Product ID
TFfexFtdcProductIDType ProductID;
///Product group ID (this field abandoned)
TFfexFtdcProductGroupIDType ProductGroupID;
///Underlying instrument ID
TFfexFtdcInstrumentIDType UnderlyingInstrID;
///Product class
TFfexFtdcProductClassType ProductClass;
///Position type
TFfexFtdcPositionTypeType PositionType;
///Strike price
TFfexFtdcPriceType StrikePrice;
///Options type
TFfexFtdcOptionsTypeType OptionsType;
///Instrument volume multiple
TFfexFtdcVolumeMultipleType VolumeMultiple;
///Underlying instrument multiple
TFfexFtdcUnderlyingMultipleType UnderlyingMultiple;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Instrument name
TFfexFtdcInstrumentNameType InstrumentName;
///Delivery year
TFfexFtdcYearType DeliveryYear;
///Delivery month
TFfexFtdcMonthType DeliveryMonth;
///Advance month
TFfexFtdcAdvanceMonthType AdvanceMonth;
///Is trading or not
TFfexFtdcBoolType IsTrading;
///Create date
TFfexFtdcDateType CreateDate;
///Open date
TFfexFtdcDateType OpenDate;
///Expire date
TFfexFtdcDateType ExpireDate;
///Start delivery date (this field abandoned)
TFfexFtdcDateType StartDelivDate;
///End delivery date (this field abandoned)
TFfexFtdcDateType EndDelivDate;
///Basis price
TFfexFtdcPriceType BasisPrice;
///Maximum market price order volume
TFfexFtdcVolumeType MaxMarketOrderVolume;
///Minimum market price order volume
TFfexFtdcVolumeType MinMarketOrderVolume;
///Maximum limit order volume
TFfexFtdcVolumeType MaxLimitOrderVolume;
///Minimum limit order volume
TFfexFtdcVolumeType MinLimitOrderVolume;
///Minimum price change
TFfexFtdcPriceType PriceTick;
///Open by natural person in delivery month (this field abandoned)
TFfexFtdcMonthCountType AllowDelivPersonOpen;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};

nRequestID: Return the ID of the instrument query request, which is specified by the user when performing the instrument query.
blsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401048][bookmark: bookmark33]6.1.27	OnRspQrylnstrumentStatus method
Response to instrument status query. This method will be called when the member system returns a response after the member system sends an instrument status query order.
[bookmark: bookmark34]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image55.png]
[bookmark: bookmark35]Parameter:
plnstrumentStatus: The address directing to the instrument status structure.
Instrument status structure:
	struct CFfexFtdcInstrumentStatusField
{
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Instrument status
TFfexFtdcInstrumentStatusType InstrumentStatus;
/// Trading segment SN
TFfexFtdcTradingSegmentSNType TradingSegmentSN;
///Enter time
TFfexFtdcTimeType EnterTime;
///Enter reason
TFfexFtdcInstStatusEnterReasonType EnterReason;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};

nRequestID: Return the ID of the instrument status query request, which is specified by the user when performing the instrument status query.
blsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401049][bookmark: bookmark36]6.1.28	OnRspQryBulletin method
Response to Exchange’s bulletin query request. This method will be called when the trading system returns a response after the member system sends an Exchange’s bulletin query order.
[bookmark: bookmark37]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image58.png]
[bookmark: bookmark38]Parameter:
pBulletin: The address directing to the structure of the Exchange’s bulletin.
Exchange’s bulletin structure:
	struct CFfexFtdcBulletinField
{
///Trading day
TFfexFtdcDateType TradingDay;
///Bulletin ID
TFfexFtdcBulletinIDType BulletinID;
///Sequence number
TFfexFtdcSequenceNoType SequenceNo;
///Bulletin type
TFfexFtdcNewsTypeType NewsType;
///Urgency
TFfexFtdcNewsUrgencyType NewsUrgency;
///Send time
TFfexFtdcTimeType SendTime;
///Abstract
TFfexFtdcAbstractType Abstract;
///Source
TFfexFtdcComeFromType ComeFrom;
///Content
TFfexFtdcContentType Content;
///URL link
TFfexFtdcURLLinkType URLLink;
///Market ID
TFfexFtdcMarketIDType MarketID;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};

nRequestID: Return the ID of the Exchange's bulletin query request, which is specified by the user when performing an Exchange’s bulletin query.
blsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401050][bookmark: bookmark39]6.1.29	OnRspQryMarketData method
Response to ordinary market data query; this method will be called when the trading backend returns a response after the client end sends an ordinary market data query.
[bookmark: bookmark40]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image62.png]
[bookmark: bookmark41]Parameter:
pMarketData: The address directing to the market data returned.
Market data structure:
	struct CFfexFtdcMarketDataField
{
///Trading day
TFfexFtdcDateType TradingDay;
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Settlement ID
TFfexFtdcSettlementIDType SettlementID;
///Last price
TFfexFtdcPriceType LastPrice;
///Previous settlement price
TFfexFtdcPriceType PreSettlementPrice;
///Previous close price
TFfexFtdcPriceType PreClosePrice;
///Previous open interest
TFfexFtdcLargeVolumeType PreOpenInterest;
///Open price
TFfexFtdcPriceType OpenPrice;
///Highest price
TFfexFtdcPriceType HighestPrice;
///Lowest price
TFfexFtdcPriceType LowestPrice;
///Volume
TFfexFtdcVolumeType Volume;
///Turnover
TFfexFtdcMoneyType Turnover;
///Open interest
TFfexFtdcLargeVolumeType OpenInterest;
///Close price
TFfexFtdcPriceType ClosePrice;
///Settlement price
TFfexFtdcPriceType SettlementPrice;
///Upper limit price
TFfexFtdcPriceType UpperLimitPrice;
///Lower limit price
TFfexFtdcPriceType LowerLimitPrice;
///Previous delta
TFfexFtdcRatioType PreDelta;
///Current delta
TFfexFtdcRatioType CurrDelta;
///Update time
TFfexFtdcTimeType UpdateTime;
///Update millisecond
TFfexFtdcMillisecType UpdateMillisec;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
};

pRspInfo: Return the address of the user response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};

nRequestID: Return the ID of the user logout request, which is specified by the user when logging out.
blsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401051][bookmark: bookmark42]6.1.30	OnRspQryMBLMarketData method
Response to instrument price query. This method will be called when the trading system returns a response after the member system instrument price query order.
[bookmark: bookmark43]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image66.png]
[bookmark: bookmark44]Parameter:
pMBLMarketData: The address directing to the structure of market by price.
Structure of market by price:
	struct CFfexFtdcMBLMarketDataField
{
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Direction
TFfexFtdcDirectionType Direction;
///Price
TFfexFtdcPriceType Price;
///Volume
TFfexFtdcVolumeType Volume;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};

nRequestID: Return the ID of the instrument price query request, which is specified by the user when performing instrument price query.
blsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401052][bookmark: bookmark45]6.1.31	OnRspQryHedgeVolume method
Response to hedge volume. The method will be called when the trading system returns a response after the member system performs the hedge volume query.
Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image69.png]
Parameter:
pHedgeVolume: The address directing to the structure of the hedge volume.
Hedge volume structure:
	struct CFfexFtdcHedgeVolumeField
{
///Trading day
TFfexFtdcDateType TradingDay;
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Settlement ID
TFfexFtdcSettlementIDType SettlementID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Original application volume of long hedge amount, in times.
TFfexFtdcVolumeType LongVolumeOriginal;
///Original application volume of short hedge amount, in times.
TFfexFtdcVolumeType ShortVolumeOriginal;
///Long hedge amount, in times.
TFfexFtdcVolumeType LongVolume;
///Short hedge amount, in times.
TFfexFtdcVolumeType ShortVolume;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};
Possible error:
Error ID 			 Error info 			 Possible reason
80 	User does not have this right 				The information of this user can only be queried
57 	Cannot operate for other members 			The information of other users cannot be queried

nRequestID: Return the ID of the executed hedge volume query, which is specified by the user when performing the hedge volume query.
blsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401053][bookmark: bookmark46]6.1.32	OnRtnTrade method
Trade return. When the trade occurs, the trading system will notify the member system and this method will be called.
[bookmark: bookmark47]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image72.png]
Parameter:
pTrade: The address directing to the structure of the trade information. Note: Some fields in the trade return are not used and the trading system returns a null value.
Trade information structure:
	struct CFfexFtdcTradeField
{
///Trading day
TFfexFtdcDateType TradingDay;
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Settlement ID
TFfexFtdcSettlementIDType SettlementID;
///Trade ID
TFfexFtdcTradeIDType TradeID;
///Direction
TFfexFtdcDirectionType Direction;
///Order ID
TFfexFtdcOrderSysIDType OrderSysID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///Trading role, not used
TFfexFtdcTradingRoleType TradingRole;
///Fund account ID, not used
TFfexFtdcAccountIDType AccountID;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Offset flag
TFfexFtdcOffsetFlagType OffsetFlag;
///Speculative hedge flag
TFfexFtdcHedgeFlagType HedgeFlag;
///Price
TFfexFtdcPriceType Price;
///Volume
TFfexFtdcVolumeType Volume;
///Trade time
TFfexFtdcTimeType TradeTime;
///Trade type, not used
TFfexFtdcTradeTypeType TradeType;
///Price source, not used
TFfexFtdcPriceSourceType PriceSource;
///User ID
TFfexFtdcUserIDType UserID;
///Local order ID
TFfexFtdcOrderLocalIDType OrderLocalID;
///Settlement member ID, not used
TFfexFtdcParticipantIDType ClearingPartID;
///Business unit, not used
TFfexFtdcBusinessUnitType BusinessUnit;
};

[bookmark: _Toc8401054][bookmark: bookmark48]6.1.33	OnRtnOrder method
Order return. When the order status changes because the member system performs the order insert and order action or for other reasons (such as partial fill), the trading system will notify the client actively, and this method will be called.
[bookmark: bookmark49]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image75.png]
Parameter:
pOrder: The address directing to the order information structure. Note: Some fields in the order return are not used and the trading system returns a null value.
Order information structure:
	struct CFfexFtdcOrderField
{
///Trading day, not used
TFfexFtdcDateType TradingDay;
///Settlement group ID, not used
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Settlement ID, not used
TFfexFtdcSettlementIDType SettlementID;
///Order ID
TFfexFtdcOrderSysIDType OrderSysID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Order price condition
TFfexFtdcOrderPriceTypeType OrderPriceType;
///Direction
TFfexFtdcDirectionType Direction;
///combination offset flag
TFfexFtdcCombOffsetFlagType CombOffsetFlag;
/// Combination speculative hedge flag
TFfexFtdcCombHedgeFlagType CombHedgeFlag;
///Price
TFfexFtdcPriceType LimitPrice;
///Volume
TFfexFtdcVolumeType VolumeTotalOriginal;
///Validity type
TFfexFtdcTimeConditionType TimeCondition;
///GTD date
TFfexFtdcDateType GTDDate;
///Volume type
TFfexFtdcVolumeConditionType VolumeCondition;
///Minimum volume
TFfexFtdcVolumeType MinVolume;
///Contingent condition
TFfexFtdcContingentConditionType ContingentCondition;
///Stop price
TFfexFtdcPriceType StopPrice;
///Forced close reason
TFfexFtdcForceCloseReasonType ForceCloseReason;
///Local order ID
TFfexFtdcOrderLocalIDType OrderLocalID;
///Automatic suspend flag
TFfexFtdcBoolType IsAutoSuspend;
///Order source, not used
TFfexFtdcOrderSourceType OrderSource;
///Order status
TFfexFtdcOrderStatusType OrderStatus;
///Order type, not used
TFfexFtdcOrderTypeType OrderType;
///Volume traded today, not used
TFfexFtdcVolumeType VolumeTraded;
///Remaining volume
TFfexFtdcVolumeType VolumeTotal;
///Order date
TFfexFtdcDateType InsertDate;
///Insert time, not used
TFfexFtdcTimeType InsertTime;
///Active time, not used
TFfexFtdcTimeType ActiveTime;
///Suspend time, not used
TFfexFtdcTimeType SuspendTime;
///Update time
TFfexFtdcTimeType UpdateTime;
///Cancel time, not used\
TFfexFtdcTimeType CancelTime;
///Update user ID
TFfexFtdcUserIDType ActiveUserID;
///Priority, not used
TFfexFtdcPriorityType Priority;
///Time sort ID, not used
TFfexFtdcTimeSortIDType TimeSortID;
///Settlement member ID, not used
TFfexFtdcParticipantIDType ClearingPartID;
///Business unit, not used
TFfexFtdcBusinessUnitType BusinessUnit;
};

[bookmark: _Toc8401055][bookmark: bookmark50]6.1.34	OnRtnQuote method
Quote return. When the member system performs the quote insert and the quote action causes changes of the quote status, the trading system service will actively notify the client, and the method will be called.
[bookmark: bookmark51]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image78.png]
Parameter:
pQuote: The address directing to the quote structure.
Quote structure:
	struct CFfexFtdcQuoteField
{
///Trading day
TFfexFtdcDateType TradingDay;
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Settlement ID
TFfexFtdcSettlementIDType SettlementID;
///Order number
TFfexFtdcQuoteSysIDType QuoteSysID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Bid volume
TFfexFtdcVolumeType BidVolume;
///Ask volume
TFfexFtdcVolumeType AskVolume;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Local quote ID
TFfexFtdcOrderLocalIDType QuoteLocalID;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
///Bid combination offset flag
TFfexFtdcCombOffsetFlagType BidCombOffsetFlag;
///Bid combination hedge flag
TFfexFtdcCombHedgeFlagType BidCombHedgeFlag;
///Bid price
TFfexFtdcPriceType BidPrice;
///Ask combination offset flag
TFfexFtdcCombOffsetFlagType AskCombOffsetFlag;
///Ask combination hedge flag
TFfexFtdcCombHedgeFlagType AskCombHedgeFlag;
///Ask price
TFfexFtdcPriceType AskPrice;
///Insert time
TFfexFtdcTimeType InsertTime;
///Cancel time
TFfexFtdcTimeType CancelTime;
///Trade time
TFfexFtdcTimeType TradeTime;
///Bid order ID
TFfexFtdcOrderSysIDType BidOrderSysID;
///Ask order ID
TFfexFtdcOrderSysIDType AskOrderSysID;
///Settlement member ID
TFfexFtdcParticipantIDType ClearingPartID;
};

[bookmark: _Toc8401056][bookmark: bookmark52]6.1.35	OnRtnForQuote method
Inquiry notice. When the client sends an inquiry request to the trading system, the trading system service actively notifies the client, and this method will be called.
The trading system only notifies the client ends that subscribe to the inquiry flow by calling the SubscribeForQuote method.
[bookmark: bookmark53]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image81.png]
[bookmark: bookmark54]Parameter:
pReqForQuote: The address directing to the inquiry structure.
Inquiry structure:
	struct CFfexFtdcInputReqForQuoteField
{
///Request for quote ID
TFfexFtdcQuoteSysIDType ReqForQuoteID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Trading day
TFfexFtdcTradingDayType TradingDay;
///Request for quote time
TFfexFtdcTimeType ReqForQuoteTime;
};

[bookmark: _Toc8401057][bookmark: bookmark55]6.1.36	OnRtnExecOrder method
Execution order return. The trading system actively notifies the member system and this method will be called.
[bookmark: bookmark56]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image83.png]
Parameter:
pExecOrder: The address directing to the execution order structure.
Executing order structure:
	struct CFfexFtdcExecOrderField
{
///Trading day
TFfexFtdcDateType TradingDay;
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Settlement ID
TFfexFtdcSettlementIDType SettlementID;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Local execution order ID
TFfexFtdcOrderLocalIDType ExecOrderLocalID;
///Volume
TFfexFtdcVolumeType Volume;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
///Execution order ID
TFfexFtdcExecOrderSysIDType ExecOrderSysID;
///Order date
TFfexFtdcDateType InsertDate;
///Insert time
TFfexFtdcTimeType InsertTime;
///Cancel time
TFfexFtdcTimeType CancelTime;
///Execution result
TFfexFtdcExecResultType ExecResult;
///Settlement member ID
TFfexFtdcParticipantIDType ClearingPartID;
};

[bookmark: _Toc8401058][bookmark: bookmark57]6.1.37	OnRtnlnstrumentStatus method
Instrument status change return. When the instrument status changes, the trading system will actively notify the member system, and the method will be called.
[bookmark: bookmark58]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image86.png]
[bookmark: bookmark59]Parameter:
plnstrumentStatus: The address directing to the instrument status structure.
Instrument status structure:
	struct CFfexFtdcInstrumentStatusField
{
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Instrument status
TFfexFtdcInstrumentStatusType InstrumentStatus;
/// Trading segment SN
TFfexFtdcTradingSegmentSNType TradingSegmentSN;
///Enter time
TFfexFtdcTimeType EnterTime;
///Enter reason
TFfexFtdcInstStatusEnterReasonType EnterReason;
};

[bookmark: _Toc8401059][bookmark: bookmark60]6.1.38	OnRtnlnsInstrument method
Notice on increased instrument. When the member system is successfully logged in, the trading system will notify the client of the increased instrument in the system through the public flow.
[bookmark: bookmark61]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image88.png]
[bookmark: bookmark62]Parameter:
plnstrument: The address directing to the instrument structure.
Instrument structure:
	struct CFfexFtdcInstrumentField
{
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Product ID
TFfexFtdcProductIDType ProductID;
///Product group ID
TFfexFtdcProductGroupIDType ProductGroupID;
///Underlying instrument ID
TFfexFtdcInstrumentIDType UnderlyingInstrID;
///Product class
TFfexFtdcProductClassType ProductClass;
///Position type
TFfexFtdcPositionTypeType PositionType;
///Strike price
TFfexFtdcPriceType StrikePrice;
///Options type
TFfexFtdcOptionsTypeType OptionsType;
///Instrument volume multiple
TFfexFtdcVolumeMultipleType VolumeMultiple;
///Underlying instrument multiple
TFfexFtdcUnderlyingMultipleType UnderlyingMultiple;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Instrument name
TFfexFtdcInstrumentNameType InstrumentName;
///Delivery year
TFfexFtdcYearType DeliveryYear;
///Delivery month
TFfexFtdcMonthType DeliveryMonth;
///Advance month
TFfexFtdcAdvanceMonthType AdvanceMonth;
///Is trading or not
TFfexFtdcBoolType IsTrading;
};

[bookmark: _Toc8401060][bookmark: bookmark63]6.1.39	O OnRtnDellnstrument method
Notice on deleted instrument. When the member system is successfully logged in, the trading system will notify the member system of the instrument deleted in the system through the public flow.
[bookmark: bookmark64]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image90.png]
[bookmark: bookmark65]Parameter:
plnstrument: The address directing to the instrument structure.
Instrument structure:
	struct CFfexFtdcInstrumentField
{
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Product ID
TFfexFtdcProductIDType ProductID;
///Product group ID
TFfexFtdcProductGroupIDType ProductGroupID;
///Underlying instrument ID
TFfexFtdcInstrumentIDType UnderlyingInstrID;
///Product class
TFfexFtdcProductClassType ProductClass;
///Position type
TFfexFtdcPositionTypeType PositionType;
///Strike price
TFfexFtdcPriceType StrikePrice;
///Options type
TFfexFtdcOptionsTypeType OptionsType;
///Instrument volume multiple
TFfexFtdcVolumeMultipleType VolumeMultiple;
///Underlying instrument multiple
TFfexFtdcUnderlyingMultipleType UnderlyingMultiple;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Instrument name
TFfexFtdcInstrumentNameType InstrumentName;
///Delivery year
TFfexFtdcYearType DeliveryYear;
///Delivery month
TFfexFtdcMonthType DeliveryMonth;
///Advance month
TFfexFtdcAdvanceMonthType AdvanceMonth;
///Is trading or not
TFfexFtdcBoolType IsTrading;
};

[bookmark: _Toc8401061][bookmark: bookmark66]6.1.40	OnRtnlnsCombinationLeg method
This method is not supported in the current version.
Notice on increased single-leg option. After the member system is successfully logged in, the trading system will notify the member system of the increased single-leg option of combined instrument in the system through the public flow.
[bookmark: bookmark67]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image93.png]
[bookmark: bookmark68]Parameter:
pCombinationLeg: The address directing to the structure of single-leg option of combined instrument.
Structure of single-leg option of combined instrument:
	struct CFfexFtdcCombinationLegField
{
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Combination instrument ID
TFfexFtdcInstrumentIDType CombInstrumentID;
///Leg ID
TFfexFtdcLegIDType LegID;
///Leg instrument ID
TFfexFtdcInstrumentIDType LegInstrumentID;
///Direction
TFfexFtdcDirectionType Direction;
///Leg multiple
TFfexFtdcLegMultipleType LegMultiple;
/// Imply level
TFfexFtdcImplyLevelType ImplyLevel;
};

[bookmark: _Toc8401062][bookmark: bookmark69]6.1.41	OnRtnDelCombinationLeg method
This method is not supported in the current version.
Notice on deleted single-leg option. After the member system is successfully logged in, the trading system will notify the member system of the deleted single-leg option of combined instrument in the system through the public flow.
[bookmark: bookmark70]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image96.png]
[bookmark: bookmark71]Parameter:
pCombinationLeg: The address directing to the structure of single-leg option of combined instrument.
Structure of single-leg option of combined instrument:
	struct CFfexFtdcCombinationLegField
{
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Combination instrument ID
TFfexFtdcInstrumentIDType CombInstrumentID;
///Leg ID
TFfexFtdcLegIDType LegID;
///Leg instrument ID
TFfexFtdcInstrumentIDType LegInstrumentID;
///Direction
TFfexFtdcDirectionType Direction;
///Leg multiple
TFfexFtdcLegMultipleType LegMultiple;
/// Imply level
TFfexFtdcImplyLevelType ImplyLevel;
};

[bookmark: _Toc8401063][bookmark: bookmark72]6.1.42	OnRtnBulletin method
Bulletin notice. When the Exchange sends a bulletin through the trading system, the trading system notifies the member system and this method will be used.
[bookmark: bookmark73]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image98.png]
[bookmark: bookmark74]Parameter:
pBulletin: The address directing to the bulletin structure.
Bulletin structure:
	struct CFfexFtdcBulletinField
{
///Trading day
TFfexFtdcDateType TradingDay;
///Bulletin ID
TFfexFtdcBulletinIDType BulletinID;
///Sequence number
TFfexFtdcSequenceNoType SequenceNo;
///Bulletin type
TFfexFtdcNewsTypeType NewsType;
///Urgency
TFfexFtdcNewsUrgencyType NewsUrgency;
///Send time
TFfexFtdcTimeType SendTime;
///Abstract
TFfexFtdcAbstractType Abstract;
///Source
TFfexFtdcComeFromType ComeFrom;
///Content
TFfexFtdcContentType Content;
///URL link
TFfexFtdcURLLinkType URLLink;
///Market ID
TFfexFtdcMarketIDType MarketID;
};

[bookmark: _Toc8401064][bookmark: bookmark75]6.1.43	OnRtnAliasDefine method
Notice on alias definition. The trading system notifies the member system, and this method will be used.
Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image101.png]
[bookmark: bookmark76]Parameter:
pAliasDefine: The address directing to the alias definition structure.
Alias definition structure:
	struct CFfexFtdcAliasDefineField
{
///Start position
TFfexFtdcStartPosType StartPos;
///Alias
TFfexFtdcAliasType Alias;
///Original text
TFfexFtdcOriginalTextType OriginalText;
};

[bookmark: _Toc8401065][bookmark: bookmark77]6.1.44	OnRtnFlowMessageCancel method
Notice on data flow cancellation. After the disaster recovery switchover occurs in the trading system, when the user logs into the trading system again and subscribes to a certain data flow (private flow or public flow), the trading system proactivelynotifies the member system that some messages of the data flow are cancelled, and this method will be used.
[bookmark: bookmark78]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image103.png]
[bookmark: bookmark79]Parameter:
pFlowMessageCancel: The address directing to the data flow cancellation structure. Alias definition structure:
	struct CFfexFtdcFlowMessageCancelField
{
///Sequence series No.
TFfexFtdcSequenceSeriesType SequenceSeries;
///Trading day
TFfexFtdcDateType TradingDay;
///Data center ID
TFfexFtdcDataCenterIDType DataCenterID;
///Start sequence No.
TFfexFtdcSequenceNoType StartSequenceNo;
///End sequence No.
TFfexFtdcSequenceNoType EndSequenceNo;
};
SequenceSeries ： RData flow ID (private flow or public flow)
Text range: （StartSequenceNo ，EndSequenceNo ］

[bookmark: _Toc8401066][bookmark: bookmark80]6.1.45	OnErrRtnOrderlnsert method
Order input’s error return. The trading system notifies the member system, and this method will be used.
Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image105.png]
Parameter:
plnputOrder: The address directing to the order input structure, including the input data when the order is submitted, and the order number returned by the backend.
Order input structure:
	struct CFfexFtdcInputOrderField
{
///Order ID, this filed is returned by the trading background.
TFfexFtdcOrderSysIDType OrderSysID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Order price condition
TFfexFtdcOrderPriceTypeType OrderPriceType;
///Direction
TFfexFtdcDirectionType Direction;
///combination offset flag
TFfexFtdcCombOffsetFlagType CombOffsetFlag;
/// Combination speculative hedge flag
TFfexFtdcCombHedgeFlagType CombHedgeFlag;
///Price
TFfexFtdcPriceType LimitPrice;
///Volume
TFfexFtdcVolumeType VolumeTotalOriginal;
///Validity type
TFfexFtdcTimeConditionType TimeCondition;
///GTD date
TFfexFtdcDateType GTDDate;
///Volume type
TFfexFtdcVolumeConditionType VolumeCondition;
///Minimum volume
TFfexFtdcVolumeType MinVolume;
///Contingent condition
TFfexFtdcContingentConditionType ContingentCondition;
///Stop price
TFfexFtdcPriceType StopPrice;
///Forced close reason
TFfexFtdcForceCloseReasonType ForceCloseReason;
///Local order ID
TFfexFtdcOrderLocalIDType OrderLocalID;
///Automatic suspend flag
TFfexFtdcBoolType IsAutoSuspend;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};

[bookmark: _Toc8401067][bookmark: bookmark81]6.1.46	OnErrRtnOrderAction method
Order action’s error return. The trading system notifies the member system and this method will be used.
[bookmark: bookmark82]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image109.png]
Parameter:
pOrderAction: The address directing to the order action structure, including the input data for submitting the order action and the order number returned by the trading system.
Order action structure:
	struct CFfexFtdcOrderActionField
{
///Order ID, this filed is returned by the trading background.
TFfexFtdcOrderSysIDType OrderSysID;
///Order action flag
TFfexFtdcActionFlagType ActionFlag;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Price
TFfexFtdcPriceType LimitPrice;
///Volume change
TFfexFtdcVolumeType VolumeChange;
///Action local ID
TFfexFtdcOrderLocalIDType ActionLocalID;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};

[bookmark: _Toc8401068][bookmark: bookmark83]6.1.47	OnErrRtnQuotelnsert method
This method is not supported in the current version.
Quote input’s error return. The trading system notifies the member system and this method will be used.
[bookmark: bookmark84]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image113.png]
Parameter:
plnputQuote: The address directing to the input quote structure, including the input data for the quote input action, and the quote number returned by the trading system.
Input quote structure:
	struct CFfexFtdcInputQuoteField
{
///Quote ID, this field is returned by the trading backend.
TFfexFtdcQuoteSysIDType QuoteSysID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Volume
TFfexFtdcVolumeType Volume;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Local quote ID
TFfexFtdcQuoteLocalIDType QuoteLocalID;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
///Bid combination offset flag
TFfexFtdcCombOffsetFlagType BidCombOffsetFlag;
///Bid combination hedge flag
TFfexFtdcCombHedgeFlagType BidCombHedgeFlag;
///Bid price
TFfexFtdcPriceType BidPrice;
///Ask combination offset flag
TFfexFtdcCombOffsetFlagType AskCombOffsetFlag;
///Ask combination hedge flag
TFfexFtdcCombHedgeFlagType AskCombHedgeFlag;
///Ask price
TFfexFtdcPriceType AskPrice;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};

[bookmark: _Toc8401069][bookmark: bookmark85]6.1.48	OnErrRtnQuoteAction method
This method is not supported in the current version.
Quote action’s error return. The trading system notifies the member system and this method will be used.
[bookmark: bookmark86]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image117.png]
Parameter:
pQuoteAction: The address directing to the quote action structure, including the input data of the quote action request and the quote number returned by the trading system.
Quote action structure:
	struct CFfexFtdcQuoteActionField
{
///Order ID, this filed is returned by the trading background.
TFfexFtdcQuoteSysIDType QuoteSysID;
///Local quote ID
TFfexFtdcOrderLocalIDType QuoteLocalID;
///Order action flag
TFfexFtdcActionFlagType ActionFlag;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Action local ID
TFfexFtdcOrderLocalIDType ActionLocalID;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};

[bookmark: _Toc8401070][bookmark: bookmark87]6.1.49	OnErrRtnExecOrderlnsert method
This method is not supported in the current version.
Execution order input’s error return. The trading system notifies the member system and this method will be used.
[bookmark: bookmark88]Function prototype:
[image: E:\2019年\2019.07\客返\07.09\media\image120.png]
[bookmark: bookmark89]Parameter:
plnputExecOrder: The address directing to the order insert structure.
Input execution order structure:

	struct CFfexFtdcInputExecOrderField
{
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Local execution order ID
TFfexFtdcOrderLocalIDType ExecOrderLocalID;
///Volume
TFfexFtdcVolumeType Volume;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};

[bookmark: _Toc8401071]6.1.50	OnErrRtnExecOrderAction method
This method is not supported in the current version.
Execution order action’s error return. The trading system notifies the member system and this method will be used.
Function prototype:
[image:]
Parameter:
pInputExecAction: The address directing to the order action structure.
Order action structure:
	struct CFfexFtdcExecOrderActionField
{
///Execution order ID
TFfexFtdcExecOrderSysIDType ExecOrderSysID;
///Local execution order ID
TFfexFtdcOrderLocalIDType ExecOrderLocalID;
///Order action flag
TFfexFtdcActionFlagType ActionFlag;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Action local ID
TFfexFtdcOrderLocalIDType ActionLocalID;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};

[bookmark: _Toc8401072]6.1.51	OnRspQryCombOrder method
This method is not supported in the current version.
Response to unconventional combined order query. The trading system notifies the member system, and this method will be used.
Function prototype:
	 void OnRspCombOrderInsert (
CShfeFtdcCombOrderField *pCombOrder,
CShfeFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast);

Parameter:
pCombOrder: The address directing to an unconventional combined order structure; structure of unconventional combined order:

	struct CFfexFtdcCombOrderField {
///Trading day
TFfexFtdcDateType TradingDay;
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Settlement ID
TFfexFtdcSettlementIDType SettlementID;
///Combination order ID
TFfexFtdcOrderSysIDType CombOrderSysID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Price
TFfexFtdcPriceType LimitPrice;
///Volume
TFfexFtdcVolumeType VolumeTotalOriginal;
///Local order ID
TFfexFtdcOrderLocalIDType CombOrderLocalID;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
///Instrument ID 1
TFfexFtdcInstrumentIDType InstrumentID1;
///Direction 1
TFfexFtdcDirectionType Direction1;
///Leg multiple 1
TFfexFtdcLegMultipleType LegMultiple1;
///Offset flag 1
TFfexFtdcOffsetFlagType OffsetFlag1;
/// Speculative hedge flag 1
TFfexFtdcHedgeFlagType HedgeFlag1;
///Instrument ID 2
TFfexFtdcInstrumentIDType InstrumentID2;
///Direction 2
TFfexFtdcDirectionType Direction2;
///Leg multiple 2
TFfexFtdcLegMultipleType LegMultiple2;
///Offset flag 1
TFfexFtdcOffsetFlagType OffsetFlag2;
/// Speculative hedge flag 2
TFfexFtdcHedgeFlagType HedgeFlag2;
///Instrument ID 3
TFfexFtdcInstrumentIDType InstrumentID3;
///Direction 3
TFfexFtdcDirectionType Direction3;
///Leg multiple 3
TFfexFtdcLegMultipleType LegMultiple3;
///Offset flag 3
TFfexFtdcOffsetFlagType OffsetFlag3;
/// Speculative hedge flag 3
TFfexFtdcHedgeFlagType HedgeFlag3;
///Instrument ID 4
TFfexFtdcInstrumentIDType InstrumentID4;
///Direction 4
TFfexFtdcDirectionType Direction4;
///Leg multiple 4
TFfexFtdcLegMultipleType LegMultiple4;
///Offset flag 4
TFfexFtdcOffsetFlagType OffsetFlag4;
/// Speculative hedge flag 4
TFfexFtdcHedgeFlagType HedgeFlag4;
///Order source
TFfexFtdcOrderSourceType OrderSource;
///Volume traded today
TFfexFtdcVolumeType VolumeTraded;
///Remaining volume
TFfexFtdcVolumeType VolumeTotal;
///Order date
TFfexFtdcDateType InsertDate;
///Insert time
TFfexFtdcTimeType InsertTime;
///Settlement member ID
TFfexFtdcParticipantIDType ClearingPartID;
};

pRspInfo: The address directing to the structure of response information. Structure of response information:
	struct CFfexFtdcRspInfoField {
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};

nRequestID: The ID of the unconventional combined order query request, which is specified and managed by the user.
bIsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401073]6.1.52	OnRtnCombOrder method
This method is not supported in the current version.
Unconventional combined order return. The trading system notifies the member system, and this method will beused.
Function prototype:
[image:]
Parameter:
pCombOrder: The address directing to an unconventional combined order structure; structure of unconventional combined order:
	struct CFfexFtdcCombOrderField {
///Trading day
TFfexFtdcDateType TradingDay;
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Settlement ID
TFfexFtdcSettlementIDType SettlementID;
///Combination order ID
TFfexFtdcOrderSysIDType CombOrderSysID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Price
TFfexFtdcPriceType LimitPrice;
///Volume
TFfexFtdcVolumeType VolumeTotalOriginal;
///Local order ID
TFfexFtdcOrderLocalIDType CombOrderLocalID;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
///Instrument ID 1
TFfexFtdcInstrumentIDType InstrumentID1;
///Direction 1
TFfexFtdcDirectionType Direction1;
///Leg multiple 1
TFfexFtdcLegMultipleType LegMultiple1;
///Offset flag 1
TFfexFtdcOffsetFlagType OffsetFlag1;
/// Speculative hedge flag 1
TFfexFtdcHedgeFlagType HedgeFlag1;
///Instrument ID 2
TFfexFtdcInstrumentIDType InstrumentID2;
///Direction 2
TFfexFtdcDirectionType Direction2;
///Leg multiple 2
TFfexFtdcLegMultipleType LegMultiple2;
///Offset flag 1
TFfexFtdcOffsetFlagType OffsetFlag2;
/// Speculative hedge flag 2
TFfexFtdcHedgeFlagType HedgeFlag2;
///Instrument ID 3
TFfexFtdcInstrumentIDType InstrumentID3;
///Direction 3
TFfexFtdcDirectionType Direction3;
///Leg multiple 3
TFfexFtdcLegMultipleType LegMultiple3;
///Offset flag 3
TFfexFtdcOffsetFlagType OffsetFlag3;
/// Speculative hedge flag 3
TFfexFtdcHedgeFlagType HedgeFlag3;
///Instrument ID 4
TFfexFtdcInstrumentIDType InstrumentID4;
///Direction 4
TFfexFtdcDirectionType Direction4;
///Leg multiple 4
TFfexFtdcLegMultipleType LegMultiple4;
///Offset flag 4
TFfexFtdcOffsetFlagType OffsetFlag4;
/// Speculative hedge flag 4
TFfexFtdcHedgeFlagType HedgeFlag4;
///Order source
TFfexFtdcOrderSourceType OrderSource;
///Volume traded today
TFfexFtdcVolumeType VolumeTraded;
///Remaining volume
TFfexFtdcVolumeType VolumeTotal;
///Order date
TFfexFtdcDateType InsertDate;
///Insert time
TFfexFtdcTimeType InsertTime;
///Settlement member ID
TFfexFtdcParticipantIDType ClearingPartID;
};

[bookmark: _Toc8401074]6.1.53	OnErrRtnCombOrderInsert method
This method is not supported in the current version.
Combined order input’s error return. The trading system notifies the member system, and this method will be used.
Function prototype:
[image:]
Parameter:
pInputCombOrder: The address directing to the unconventional combined order input structure; structure of unconventional combined order input:
	struct CFfexFtdcInputCombOrderField {
///Combination order ID
TFfexFtdcOrderSysIDType CombOrderSysID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Price
TFfexFtdcPriceType LimitPrice;
///Volume
TFfexFtdcVolumeType VolumeTotalOriginal;
///Local order ID
TFfexFtdcOrderLocalIDType CombOrderLocalID;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
///Instrument ID 1
TFfexFtdcInstrumentIDType InstrumentID1;
///Direction 1
TFfexFtdcDirectionType Direction1;
///Leg multiple 1
TFfexFtdcLegMultipleType LegMultiple1;
///Offset flag 1
TFfexFtdcOffsetFlagType OffsetFlag1;
/// Speculative hedge flag 1
TFfexFtdcHedgeFlagType HedgeFlag1;
///Instrument ID 2
TFfexFtdcInstrumentIDType InstrumentID2;
///Direction 2
TFfexFtdcDirectionType Direction2;
///Leg multiple 2
TFfexFtdcLegMultipleType LegMultiple2;
///Offset flag 1
TFfexFtdcOffsetFlagType OffsetFlag2;
/// Speculative hedge flag 2
TFfexFtdcHedgeFlagType HedgeFlag2;
///Instrument ID 3
TFfexFtdcInstrumentIDType InstrumentID3;
///Direction 3
TFfexFtdcDirectionType Direction3;
///Leg multiple 3
TFfexFtdcLegMultipleType LegMultiple3;
///Offset flag 3
TFfexFtdcOffsetFlagType OffsetFlag3;
/// Speculative hedge flag 3
TFfexFtdcHedgeFlagType HedgeFlag3;
///Instrument ID 4
TFfexFtdcInstrumentIDType InstrumentID4;
///Direction 4
TFfexFtdcDirectionType Direction4;
///Leg multiple 4
TFfexFtdcLegMultipleType LegMultiple4;
///Offset flag 4
TFfexFtdcOffsetFlagType OffsetFlag4;
/// Speculative hedge flag 4
TFfexFtdcHedgeFlagType HedgeFlag4;
};

pRspInfo: The address directing to the structure of response information. Structure of response information:
	struct CFfexFtdcRspInfoField {
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};

[bookmark: _Toc8401075]6.1.54	OnRspAdminOrderInsert method
Response to Administrator's order input. The trading system notifies the member system, and this method will be used.
Function prototype:
[image:]
Parameter:
pInputAdminOrder: The address directing to the administrator's order input structure.
Structure of administrator's order input:
	struct CFfexFtdcInputAdminOrderField
{
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Administration order command
TFfexFtdcAdminOrderCommandFlagType AdminOrderCommand;
///Settlement member ID
TFfexFtdcParticipantIDType ClearingPartID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
/// Amount
TFfexFtdcMoneyType Amount;
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};

nRequestID: The ID of the administrator's order input request, which is specified and managed by the user.
bIsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401076]6.1.55	OnRspQryCreditLimit method
Response to credit limit query. The trading backend notifies the member system, and the method will be used.
Function prototype:
[image:]
Parameter:
pQryCreaditLimit: The address directing to the credit limit structure
Credit limit structure
	struct CFfexFtdcCreditLimitField
{
///Trading day
TFfexFtdcDateType TradingDay;
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Settlement ID
TFfexFtdcSettlementIDType SettlementID;
///Previous balance
TFfexFtdcMoneyType PreBalance;
///Current margin
TFfexFtdcMoneyType CurrMargin;
///Close profit
TFfexFtdcMoneyType CloseProfit;
///Income and expense of option premium
TFfexFtdcMoneyType Premium;
///Deposit amount
TFfexFtdcMoneyType Deposit;
///Withdrawal amount
TFfexFtdcMoneyType Withdraw;
///Balance
TFfexFtdcMoneyType Balance;
///Available fund
TFfexFtdcMoneyType Available;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Settlement member ID
TFfexFtdcParticipantIDType ClearingPartID;
///Frozen margin
TFfexFtdcMoneyType FrozenMargin;
///Frozen premium
TFfexFtdcMoneyType FrozenPremium;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};

nRequestID: The ID of the credit limit query request, which is specified and managed by the user.
bIsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401077]6.1.56	OnRspMarginCombAction method
Response to position combination/split request. This method will be used when the transaction backend returns a response after the member system sends a position combination/split request order.
Function prototype:
[image:]
Parameter:
pMarginCombAction: The address directing to the position combination/split application structure
Structure of position combination/split request
	struct CFfexFtdcMarginCombActionField
{
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///User ID
TFfexFtdcUserIDType UserID;
///Client ID
TFfexFtdcClientIDType ClientID;
///Action local ID
TFfexFtdcOrderLocalIDType ActionLocalID;
///Combination instrument ID
TFfexFtdcInstrumentIDType CombInstrumentID;
///Combination volume
TFfexFtdcVolumeType CombVolume;
///Combination direction
TFfexFtdcCombDirectionType CombDirection;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};

nRequestID: The ID of the position combination/split request, which is specified and managed by the user.
bIsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401078]6.1.57	OnRtnMarginCombAction method
Notice on client combination/split request.
The member system’s combination/split request order; if the combination/split succeeds, it will be pushed through combination application notice; if it fails, only the response to the combination/split request will be sent.
Function prototype:
[image:]
Parameter:
pMarginCombAction: The address directing to the structure of combination/split request.
Structure of combination/split request:
	struct CFfexFtdcMarginCombActionField
{
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///User ID
TFfexFtdcUserIDType UserID;
///Client ID
TFfexFtdcClientIDType ClientID;
///Action local ID
TFfexFtdcOrderLocalIDType ActionLocalID;
///Combination instrument ID
TFfexFtdcInstrumentIDType CombInstrumentID;
///Combination volume
TFfexFtdcVolumeType CombVolume;
///Combination direction
TFfexFtdcCombDirectionType CombDirection;
};

[bookmark: _Toc8401079]6.1.58	OnRspQryPartClientCombPosition method
Response to trade ID combined position query. The trading backend notifies the member system, and the method will be used.
Function prototype:
[image:]
Parameter:
pPartClientCombPosition: The address directing to the structure of the trade ID combined position
Structure of trade ID combined position
	struct CFfexFtdcPartClientCombPositionField
{
///Trading day
TFfexFtdcDateType TradingDay;
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Settlement ID
TFfexFtdcSettlementIDType SettlementID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///Combination instrument ID
TFfexFtdcInstrumentIDType CombInstrumentID;
///Combination position
TFfexFtdcVolumeType CombPosition;
///Combination free margin
TFfexFtdcMoneyType CombFreeMargin;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};

nRequestID: The ID of the trade ID combined position query request, which is specified and managed by the user.
bIsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401080]6.1.59	OnRspQryPartClientLegPosition method
Response to trade ID single-leg position query. The trading backend notifies the member system, and the method will be used.
Function prototype:
[image:]
Parameter:
pPartClientLegPosition: The address directing to the structure of the trade ID single-leg position
Structure of trade ID single-leg position
	struct CFfexFtdcPartClientLegPositionField
{
///Trading day
TFfexFtdcDateType TradingDay;
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Settlement ID
TFfexFtdcSettlementIDType SettlementID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///Leg instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Long position
TFfexFtdcVolumeType LongPosition;
///Short position
TFfexFtdcVolumeType ShortPosition;
///Long close frozen position
TFfexFtdcVolumeType LongCloseFrozenPosition;
///Short close frozen position
TFfexFtdcVolumeType ShortCloseFrozenPosition;
};

pRspInfo: The address directing to the structure of response information.
Structure of response information:
	struct CFfexFtdcRspInfoField
{
///Error ID
TFfexFtdcErrorIDType ErrorID;
///Error info
TFfexFtdcErrorMsgType ErrorMsg;
};

nRequestID: The ID of the trade ID single-leg position query request, which is specified and managed by the user.
bIsLast: Indicate whether this return is the last return for nRequestID.
[bookmark: _Toc8401081]6.1.60	OnRtnMarginCombinationLeg method
Notice on combination rule. When the member system is successfully logged in, the trading system notifies the client-end of the full amount of the combination rule in the system through the public flow.
Function prototype:
[image:]
Parameter:
pMarginCombinationLeg: The address directing to the combination rule structure.
Combination rule structure:
	struct CFfexFtdcMarginCombinationLegField
{
///Trading day
TFfexFtdcDateType TradingDay;
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Settlement ID
TFfexFtdcSettlementIDType SettlementID;
///Combination instrument ID
TFfexFtdcInstrumentIDType CombInstrumentID;
///Leg ID
TFfexFtdcLegIDType LegID;
///Leg instrument ID
TFfexFtdcInstrumentIDType LegInstrumentID;
///Direction
TFfexFtdcDirectionType Direction;
///Leg multiple
TFfexFtdcLegMultipleType LegMultiple;
///Priority
TFfexFtdcPriorityType Priority;
///Combination rule type
TFfexFtdcRuleTypeType RuleType;
};

[bookmark: _Toc8401082]6.2	CFfexFtdcTraderApi interface
The functions provided by the CFfexFtdcTraderApi interface to users include the input, revocation, suspension, activation, modification and query of orders and quotes, trade query, member client query, member position query, client position query, instrument query, instrument status query, Exchange’s bulletin query, etc.
The system limits the order speed (the number of orders sent per second) sent by each seat. If the limit is exceeded, the sent orders will be blocked on the network. For the specific number of limits, please consult the relevant department of the Exchange.
[bookmark: _Toc8401083]6.2.1	CreateFtdcTraderApi method
Generate an instance of CFfexFtdcTradeApi but not by new.
Function prototype:
[image:]
Parameter:
pszFlowPath: A constant character pointer that specifies a file directory to save the status of messages published by the trading backend. The default value represents the current directory.
Return value:
Return a pointer directing to an instance of CFfexFtdcTradeApi .
[bookmark: _Toc8401084]6.2.2	GetVersion method
Get the API version number.
Function prototype:
[image:]
Parameter:
nMajorVersion: return the major version number
nMajorVersion: return the minor version number
Return value:
Return a constant pointer directing to the version identifier string.
[bookmark: _Toc8401085]6.2.3	Release method
Release a CFfexFtdcTradeApi instance. The “Delete” method cannot be used.
Function prototype:
[image:]
[bookmark: _Toc8401086]6.2.4	Init method
The member system establishes a connection with the trading backend, and login can be made after the connection is successful.
Function prototype:
[image:]
[bookmark: _Toc8401087]6.2.5	Join method
The member system waits for the end of an interface instance thread.
Function prototype:
[image:]
[bookmark: _Toc8401088]6.2.6	GetTradingDay method
Get the current trading day. The correct value can be taken only after the connection to the trading backend is established.
Function prototype:
[image:]
Return value:
Return a constant pointer directing to a date information string.
[bookmark: _Toc8401089]6.2.7	RegisterSpi method
Register an instance derived from the CFfexFtdcTraderSpi interface class, which will complete the event handling.
Function prototype:
[image:]
Parameter:
pSpi: Implement an instance pointer for the CFfexFtdcTraderSpi interface.
[bookmark: _Toc8401090]6.2.8	RegisterFront method
In Trader API versions later than V1.62 (including V1.62), this interface will be closed
Set the network communication addresses of the front-end systems of the trading system. The trading system has multiple communication addresses. Users can simultaneously register the network communication addresses of multiple front-end processors.
Function prototype:
[image:]
Parameter:
pszFrontAddress: The pointer directing to the network communication addresses of the Exchange's front-end processors. The format of the server address is: "protocol://ipaddress:port". For example: "tcp://127.0.0.1:17001". "tcp" represents the transport protocol and "127.0.0.1" represents the server address. "17001" represents the server port number.
[bookmark: _Toc8401091]6.2.9	RegisterNameServer method
Set the network communication address of the Exchange’s NameServer to obtain the list of the front-end processors. The trading system has multiple NameServers, and users can register the network communication addresses of multiple NameServers at the same time.
This method should be used before the Init method.
Function prototype:
[image:]
Parameter:
pszNsAddress: The pointer directing to the network communication address of the Exchange's NameServer. The format of the network address is: "protocol://ipaddress:port". For example: "tcp://127.0.0.1:17001". "tcp" represents the transport protocol and "127.0.0.1" represents the server address. "17001" represents the server port number.
[bookmark: _Toc8401092]6.2.10	SetHeartbeatTimeout method
Set the timeout period for network communication heartbeat. When the TCP connection between the TraderAPI and the trading system is established, the connection periodically sends a heartbeat to detect whether the connection is normal. This method is used to set the time to detect the heartbeat timeout. The Exchange recommends that the member system set the timeout between 10 and 30 seconds.
Function prototype:
[image:]
Parameter:
Timeout: Heartbeat timeout (second). If no information is received from the trading system for more than timeout/2 seconds, CFfexFtdcTraderApi::OnHeartBeatWarning() will be triggered. If no information is received from the trading system for more than timeout seconds, the connection will be interrupted and CFfexFtdcTraderApi::OnFrontDisconnected() will be triggered.
See Section 6.1.2, Part 1.
[bookmark: _Toc8401093]6.2.11	OpenRequestLog method
Open the request log file. After calling this method, all the requests sent to the trading system will be recorded in the specified log file.
Function prototype:
[image:]
Parameter:
pszReqLogFileName: The name of the request log file.
[bookmark: _Toc8401094]6.2.12	OpenResponseLog method
Open the response log file. After calling this method, all the information returned by the trading system will be recorded in the specified log file, including responses and returns.
Function prototype:
[image:]
Parameter:
pszRspLogFileName: The name of the response log file.
[bookmark: _Toc8401095]6.2.13	SubscribePrivateTopic method
Subscribe to private flow. This method will be used before the Init method. If not used, the data of the private flow will not be received.
Function prototype:
[image:]
Parameter:
nResumeType: Private flow retransmission method
	TERT_RESTART: Start retransmission from the current trading day
	TERT_RESUME: Resume transmission from where it was left. To ensure the integrity of the member’s trading data, the Exchange recommends using this method to receive the private flow, and the subsequent trading data will be processed after the member's and trader’s trading data of the same day is restored.
	TERT_QUICK: Only transmit the private flow content after login. To ensure the integrity of the member trading data, the Exchange does not recommend using this method to receive the private flow.
[bookmark: _Toc8401096]6.2.14	SubscribePublicTopic method
Subscribe to public flow. This method will be used before the Init method. If not used, the public flow data will not be received.
Function prototype:
[image:]
Parameter:
nResumeType: public flow retransmission method
	TERT_RESTART: Start retransmission from the current trading day
	TERT_RESUME: Resume transmission from where it was left
	TERT_QUICK: Only transmit the private flow content after login.
[bookmark: _Toc8401097]6.2.15	SubscribeUserTopic method
Subscribe to trader’s private flow. This method will be used before the Init method. If not used, the public flow data will not be received.
Function prototype:
[image:]
Parameter:
nResumeType: Public flow retransmission method
	TERT_RESTART: Retransmission from this trading day;
	TERT_RESUME: Resume transmission from where it was left. To ensure the integrity of the member’s trading data, the Exchange recommends using this method to receive the private flow, and the subsequent trading data will be processed after the member's and trader’s trading data of the same day is restored.
	TERT_QUICK: Only transmit the private flow content after login. To ensure the integrity of the member trading data, the Exchange does not recommend using this method to receive private flow.
[bookmark: _Toc8401098]6.2.16	SubscribeForQuote method
Subscribe to client inquiry flow. This method will be used before the Init method. If not used, the data of the inquiry flow will not be received.
Function prototype:
[image:]
Parameter:
nResumeType: The retransmission method for the inquiry flow,
[bookmark: _Toc7015339]	TERT_RESTART: Retransmission from this trading day;
	TERT_RESUME: Resume transmission from where it was left. To ensure the integrity of the member’s trading data, the Exchange recommends using this method to receive the inquiry flow, and the subsequent orders and quotes will be processed after the member's and trader’s trading data of the same day is restored.
	TERT_QUICK: Only for transmitting inquiry flow content after login. To ensure the integrity of the member trading data, the Exchange does not recommend using this method to receive inquiry flow.
[bookmark: _Toc8401099]6.2.17	ReqUserLogin method
The user sends a login request.
Function prototype:
[image:]
Parameter:
pReqUserLoginField: The address directing to the structure of user login request.
[bookmark: _Toc7015340]Structure of user login request:
	struct CFfexFtdcReqUserLoginField
{
///Trading day
TFfexFtdcDateType TradingDay;
///User ID
TFfexFtdcUserIDType UserID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Password
TFfexFtdcPasswordType Password;
///User product information
TFfexFtdcProductInfoType UserProductInfo;
///Interface product information
TFfexFtdcProductInfoType InterfaceProductInfo;
///Protocol information
TFfexFtdcProtocolInfoType ProtocolInfo;
///Data center ID
TFfexFtdcDataCenterIDType DataCenterID;
};
The user needs to fill in the UserProductInfo field, i.e. product information of the member system, such as software developer and version number, for example: "Ffex Trader V100" represents the trading procedure and version number developed by China Financial Futures Exchange.
If the member system maintains the retransmission sequence number itself, please note that TradingDay and DataCenterID shall be filled withthe return value of the last login response. If you log in for the first time or do not need to continue, TradingDay can be filled with a null string (""), and DataCenterID can be filled with 0 or the main data center ID published by the Exchange.

nRequestID: The ID of the user login request, which is specified and managed by the user.
Return value:
[bookmark: _Toc7015341]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 represents that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401100]6.2.18	ReqUserLogout method
The user sends a logout request.
Function prototype:
[image:]
Parameter:
pReqUserLogout: The address directing to the user logout request structure.
[bookmark: _Toc7015342]User logout request structure:
	struct CFfexFtdcReqUserLogoutField
{
///User ID
TFfexFtdcUserIDType UserID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
};

nRequestID: The ID of the user logout request, which is specified and managed by the user.
[bookmark: _Toc7015343]Return value:
[bookmark: _Toc7015344]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401101]6.2.19	ReqUserPasswordUpdate method
User password modification request.
Function prototype:
[image:]
Parameter:
pUserPasswordUpdate: The address directing to the user password modification structure.
[bookmark: _Toc7015345]User password modification structure:
	struct CFfexFtdcUserPasswordUpdateField
{
///User ID
TFfexFtdcUserIDType UserID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Old password
TFfexFtdcPasswordType OldPassword;
///New password
TFfexFtdcPasswordType NewPassword;
};

nRequestID: The ID of the user action request, which is specified and managed by the user.
[bookmark: _Toc7015346]Return value:
[bookmark: _Toc7015347]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401102]6.2.20	ReqSubscribeTopic method
Topic subscription request. It should be used after the login is completed.
Function prototype:
[image:]
Parameter:
pDissemination: The address directing to the structure of topic subscription, including the topic to be subscribed to and the sequence number of the starting message. Structure of topic subscription:
	struct CFfexFtdcDisseminationField {
///Sequence series
TFfexFtdcSequenceSeriesType SequenceSeries;
///Sequence number
TFfexFtdcSequenceNoType SequenceNo;
};

SequenceSeries: The topic to be subscribed to; 1 represents dialogue flow, 2 represents member private flow, 3 represents public flow, 4 represents query, and 5 represents trader private flow
SequenceNo:=-1 represents using the QUICK method, while other values indicate that retransmission starts from the sequence number.
nRequestID: The ID of the user action request, which is specified and managed by the user.
[bookmark: _Toc7015348]Return value:
[bookmark: _Toc7015349]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401103]6.2.21	ReqQryTopic method
Query topic request. It should be used after the login is completed.
Function prototype:
[image:]
Parameter:
pDissemination: The address directing to the structure of the queried topic, including the topic to be queried. Topic subscription
structure:
	struct CFfexFtdcDisseminationField {
///Sequence series No.
TFfexFtdcSequenceSeriesType SequenceSeries;
///Sequence No.
TFfexFtdcSequenceNoType SequenceNo;
};
SequenceSeries ： Subject to query
SequenceNo: No need to fill in

nRequestID: The ID of the user action request, which is specified and managed by the user.
[bookmark: _Toc7015350]Return value:
[bookmark: _Toc7015351]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401104]6.2.22	ReqOrderInsert method
The member system sends an order insert request.
Function prototype:
[image:]
Parameter:
pInputOrder: The address directing to the order input structure.
[bookmark: _Toc7015352]Order input structure:
	struct CFfexFtdcInputOrderField
{
///Order ID, this filed is returned by the trading background.
TFfexFtdcOrderSysIDType OrderSysID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Order price condition
TFfexFtdcOrderPriceTypeType OrderPriceType;
///Direction
TFfexFtdcDirectionType Direction;
///Combination offset flag, only the first flag is valid
TFfexFtdcCombOffsetFlagType CombOffsetFlag;
/// Combination speculative hedge flag, only the first flag is valid
TFfexFtdcCombHedgeFlagType CombHedgeFlag;
///Price
TFfexFtdcPriceType LimitPrice;
///Volume
TFfexFtdcVolumeType VolumeTotalOriginal;
///Validity type
TFfexFtdcTimeConditionType TimeCondition;
///GTD date, not used
TFfexFtdcDateType GTDDate;
///Volume type, only "any volume" is supported
TFfexFtdcVolumeConditionType VolumeCondition;
///Minimum volume, not used
TFfexFtdcVolumeType MinVolume;
///Contingent condition, only "immediately" is supported
TFfexFtdcContingentConditionType ContingentCondition;
///Stop price, not used
TFfexFtdcPriceType StopPrice;
///Forced close reason, only "non-forced close" is supported
TFfexFtdcForceCloseReasonType ForceCloseReason;
///Local order ID
TFfexFtdcOrderLocalIDType OrderLocalID;
///Automatic suspend flag
TFfexFtdcBoolType IsAutoSuspend;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
};
* OrderLocalID： The local order ID can only increase monotonously. After each time of login, the largest OrderLocalID can be
obtained from the input parameter CFfexFtdcRspUserLoginField of OnRspUserLogin, namely
MaxOrderLocalID. As the trading system compares the size of the OrderLocalID by string, please fill up the entire space of TFfexFtdcOrderLocalIDType
when setting the OrderLocalID.

nRequestID: The ID of the user's order request, which is specified and managed by the user. This ID cannot be repeated in one session.
The fields that the limit order must fill in include:
1)	MemberID: member’s ID number, like "2008";
2)	ClientID: client’s ID number, like "10000029";
3)	UserID: user’s ID number, like "200801";
4)	InstrumentID: instrument’s ID number, like "IF1109";
5)	OrderPriceType: the order price condition, can only be FFEX_FTDC_OPT_LimitPrice;
6)	Direction: direction type, FFEX_FTDC_D_Buy means buy, FFEX_FTDC_D_Sell means sell;
7)	CombOffsetFlag: combination offset flag, "0" means open position, "1" means close position;
8)	CombHedgeFlag: combination hedge flag, can only be 1", indicating speculation;
9)	LimitPrice: price, like 3500.00;
10)	VolumeTotalOriginal: the quantity, for example, 5 means 5 lots;
11)	TimeCondition: the validity period type, FFEX_FTDC_TC_IOC ("Immediate trade, otherwise revoked") or FFEX_FTDC_TC_GFD ("Valid on the same day");
12)	VolumeCondition: volume type, can only be FFEX_FTDC_VC_AV ("any number");
13)	ContingentCondition: trigger condition, can only be FFEX_FTDC_CC_Immediately ("immediately");
14)	ForceCloseReason: the reason for forced close, can only be FFEX_FTDC_FCC_NotForceClose ("not forced close");
15)	OrderLocalID: local order number, like "00000025".
[bookmark: _Toc7015353]The fields that the market price order must fill include:
1)	MemberID: member’s ID number, like "2008";
2)	ClientID: client’s ID number, like "10000029";
3)	UserID: user’s ID number, like "200801";
4)	InstrumentID: instrument’s ID number, like "IF1109";
5)	OrderPriceType: the order price condition, can only be FFEX_FTDC_OPT_AnyPrice;
6)	Direction: direction type, FFEX_FTDC_D_Buy means buy, FFEX_FTDC_D_Sell means sell;
7)	CombOffsetFlag: combination offset flag, "0" means open position, "1" means close position;
8)	CombHedgeFlag: combination hedge flag, can only be 1", indicating speculation;
9)	VolumeTotalOriginal: the quantity, for example, 5 means 5 lots;
10)	TimeCondition: the validity type, can only be FFEX_FTDC_TC_IOC ("trade immediately, otherwise revoke");
11)	VolumeCondition: volume type, can only be FFEX_FTDC_VC_AV ("any number");
12)	ContingentCondition: trigger condition, can only be FFEX_FTDC_CC_Immediately ("immediately");
13)	ForceCloseReason: the reason for forced close, can only be FFEX_FTDC_FCC_NotForceClose ("not forced close");
14)	OrderLocalID: local order number, like "00000025".
[bookmark: _Toc7015354]Return value:
[bookmark: _Toc7015355]	0 represents success;
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 represents that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401105]6.2.23	ReqOrderAction method
The member system sends an order action request, including revocation, suspension, activation and modification of an order.
Function prototype:
[image:]
Parameter:
pOrderAction: The address directing to the order action structure.
[bookmark: _Toc7015356]Order action structure:
	struct CFfexFtdcOrderActionField
{
///Order ID, this filed is returned by the trading background.
TFfexFtdcOrderSysIDType OrderSysID;
///Local order ID*
TFfexFtdcOrderLocalIDType OrderLocalID;
///Order action flag
TFfexFtdcActionFlagType ActionFlag;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Price, not used
TFfexFtdcPriceType LimitPrice;
///Action local ID*
TFfexFtdcOrderLocalIDType ActionLocalID;
///Volume change
TFfexFtdcVolumeType VolumeChange;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
};
* OrderSysID and OrderLocalID refer to the target orders to be operated, either of which can be filled in.
* ActionLocalID: The Action local ID can only increase monotonously. After each time of login, the largest OrderLocalID can be
obtained from the input parameter CFfexFtdcRspUserLoginField of OnRspUserLogin, namely
MaxOrderLocalID 。 As the trading system compares the size of the ActionLocalID by string, please fill up the entire space of TFfexFtdcOrderLocalIDType
when setting the ActionLocalID.

nRequestID: The ID of the user's order action request, which is specified and managed by the user.
[bookmark: _Toc7015357]Return value:
[bookmark: _Toc7015358]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401106]6.2.24	ReqQuoteInsert method
The member system sends a quote input request.
Function prototype:
[image:]
Parameter:
pInputQuote: The address directing to the quote input structure.
[bookmark: _Toc7015359]Quote input structure:
	struct CFfexFtdcInputQuoteField
{
///Quote ID, this field is returned by the trading backend.
TFfexFtdcQuoteSysIDType QuoteSysID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Bid volume
TFfexFtdcVolumeType BidVolume;
///Ask volume
TFfexFtdcVolumeType AskVolume;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Local quote ID
TFfexFtdcQuoteLocalIDType QuoteLocalID;
///Business unit, not used
TFfexFtdcBusinessUnitType BusinessUnit;
///Bid combination offset flag
TFfexFtdcCombOffsetFlagType BidCombOffsetFlag;
///Bid combination hedge flag
TFfexFtdcCombHedgeFlagType BidCombHedgeFlag;
///Bid price
TFfexFtdcPriceType BidPrice;
///Ask combination offset flag
TFfexFtdcCombOffsetFlagType AskCombOffsetFlag;
///Ask combination hedge flag
TFfexFtdcCombHedgeFlagType AskCombHedgeFlag;
///Ask price
TFfexFtdcPriceType AskPrice;
};

nRequestID: The ID of the user's quote request, which is specified and managed by the user.
[bookmark: _Toc7015360]Return value:
[bookmark: _Toc7015361]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401107]6.2.25	ReqQuoteAction method
The member system sends a quote action request, including revocation, suspension, activation and modification of a quote.
The current version only supports the revocation of quotes.
Function prototype:
[image:]
Parameter:
pQuoteAction: The address directing to the quote action structure.
[bookmark: _Toc7015362]Quote action structure:
	struct CFfexFtdcQuoteActionField
{
///Order number
TFfexFtdcQuoteSysIDType QuoteSysID;
///Local quote ID
TFfexFtdcOrderLocalIDType QuoteLocalID;
///Order action flag
TFfexFtdcActionFlagType ActionFlag;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Action local ID
TFfexFtdcOrderLocalIDType ActionLocalID;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
};

nRequestID: The ID of the user's quote action request, which is specified and managed by the user.
[bookmark: _Toc7015363]Return value:
[bookmark: _Toc7015364]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401108]6.2.26	ReqForQuote method
Client inquiry request.
Function prototype:
[image:]
Parameter:
pQuoteAction: The address directing to the quote action structure.
[bookmark: _Toc7015365]Quote action structure:
	///Request for quote
struct CFfexFtdcInputReqForQuoteField
{
///Request for quote ID
TFfexFtdcQuoteSysIDType ReqForQuoteID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Trading day
TFfexFtdcTradingDayType TradingDay;
///Request for quote time
TFfexFtdcTimeType ReqForQuoteTime;
};

nRequestID: The ID of the user's quote action request, which is specified and managed by the user.
[bookmark: _Toc7015366]Return value:
[bookmark: _Toc7015367]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401109]6.2.27	ReqExecOrderInsert method
This method is not supported in the current version.
Execution order inputrequest.
Function prototype:
[image:]
Parameter:
pInputExecOrder: The address directing to the structure of execution order.
[bookmark: _Toc7015368]Executing order structure:
	struct CFfexFtdcInputExecOrderField
{
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Local execution order ID
TFfexFtdcOrderLocalIDType ExecOrderLocalID;
///Volume
TFfexFtdcVolumeType Volume;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
};

nRequestID: The ID of the orderinput request, which is specified and managed by the user.
[bookmark: _Toc7015369]Return value:
[bookmark: _Toc7015370]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401110]6.2.28	ReqExecOrderAction method
This method is not supported in the current version.
Execution order action request.
Function prototype:
[image:]
Parameter:
pExecOrderAction: The address directing to the structure of the execution order action.
[bookmark: _Toc7015371]Structure of execution order action:
	struct CFfexFtdcExecOrderActionField
{
///Execution order ID
TFfexFtdcExecOrderSysIDType ExecOrderSysID;
///Local execution order ID
TFfexFtdcOrderLocalIDType ExecOrderLocalID;
///Order action flag
TFfexFtdcActionFlagType ActionFlag;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Action local ID
TFfexFtdcOrderLocalIDType ActionLocalID;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
};

nRequestID: The ID of the execution order action request, which is specified and managed by the user.
[bookmark: _Toc7015372]Return value:
[bookmark: _Toc7015373]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401111]6.2.29	ReqQryPartAccount method
Member account query request. All query requests that have not completed in the specified period will be cleared (this rule applies to the following query methods).
Function prototype:
[image:]
Parameter:
pQryPartAccount: The address directing to the member account query structure.
[bookmark: _Toc7015374]Member account query structure:
[image:]
	struct CFfexFtdcQryPartAccountField
{
///Start member ID, the member only
TFfexFtdcParticipantIDType PartIDStart;
///End member ID, the member only
TFfexFtdcParticipantIDType PartIDEnd;
///Fund account ID, optional
TFfexFtdcAccountIDType AccountID;
};

nRequestID: The ID of the user action request, which is specified and managed by the user.
[bookmark: _Toc7015375]Return value:
[bookmark: _Toc7015376]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401112]6.2.30	ReqQryOrder method
Order query request.
Function prototype:
[image:]
Parameter:
pQryOrder: The address directing to the order query structure.
[bookmark: _Toc7015377]Order query structure:
	struct CFfexFtdcQryOrderField
{
///Start member ID, the member only
TFfexFtdcParticipantIDType PartIDStart;
///End member ID, the member only
TFfexFtdcParticipantIDType PartIDEnd;
///Order ID, optional
TFfexFtdcOrderSysIDType OrderSysID;
///Instrument ID, optional
TFfexFtdcInstrumentIDType InstrumentID;
///Client ID, optional
TFfexFtdcClientIDType ClientID;
///User ID, optional
TFfexFtdcUserIDType UserID;
///Time start, optional
TFfexFtdcTimeType TimeStart;
///Time end, optional
TFfexFtdcTimeType TimeEnd;
};

nRequestID: The ID of the user's order query request, which is specified and managed by the user.
[bookmark: _Toc7015378]Return value:
[bookmark: _Toc7015379]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401113]6.2.31	ReqQryQuote method
This method is not supported in the current version.
Quote query request.
Function prototype:
[image:]
Parameter:
pQryQuote: The address directing to the quote query structure.
[bookmark: _Toc7015380]Quote query structure:
	struct CFfexFtdcQryQuoteField
{
///Member ID start
TFfexFtdcParticipantIDType PartIDStart;
///Member ID end
TFfexFtdcParticipantIDType PartIDEnd;
///Order number
TFfexFtdcQuoteSysIDType QuoteSysID;
///Client ID
TFfexFtdcClientIDType ClientID;
///Instrument ID
TFfexFtdcInstrumentIDType InstrumentID;
///User ID
TFfexFtdcUserIDType UserID;
};

nRequestID: The ID of the user's quote query request, which is specified and managed by the user.
[bookmark: _Toc7015381]Return value:
[bookmark: _Toc7015382]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401114]6.2.32	ReqQryTrade method
Trade query request.
Function prototype:
[image:]
Parameter:
pQryTrade: The address directing to the trade query structure.
[bookmark: _Toc7015383]Trade query structure:
	struct CFfexFtdcQryTradeField
{
///Start member ID, the member only
TFfexFtdcParticipantIDType PartIDStart;
///End member ID, the member only
TFfexFtdcParticipantIDType PartIDEnd;
///Instrument ID start, optional
TFfexFtdcInstrumentIDType InstIDStart;
///Instrument ID end, optional
TFfexFtdcInstrumentIDType InstIDEnd;
///Trade ID, optional
TFfexFtdcTradeIDType TradeID;
///Client ID, optional
TFfexFtdcClientIDType ClientID;
///User ID, optional
TFfexFtdcUserIDType UserID;
///Time start, optional
TFfexFtdcTimeType TimeStart;
///Time end, optional
TFfexFtdcTimeType TimeEnd;
};

nRequestID: The ID of the user's trade query request, which is specified and managed by the user.
[bookmark: _Toc7015384]Return value:
[bookmark: _Toc7015385]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401115]6.2.33	ReqQryClient method
Member client query request.
Function prototype:
[image:]
Parameter:
pQryClient: The address directing to the client query structure.
[bookmark: _Toc7015386]Client query structure:
	struct CFfexFtdcQryClientField
{
///Start member ID, the member only
TFfexFtdcParticipantIDType PartIDStart;
///End member ID, the member only
TFfexFtdcParticipantIDType PartIDEnd;
///Client ID start, optional
TFfexFtdcClientIDType ClientIDStart;
///Client ID end, optional
TFfexFtdcClientIDType ClientIDEnd;
};

nRequestID: The ID of the user client query request, which is specified and managed by the user.
[bookmark: _Toc7015387]Return value:
[bookmark: _Toc7015388]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401116]6.2.34	ReqQryPartPosition method
Member position query request.
Function prototype:
[image:]
Parameter:
pQryPartPosition: The address directing to the member position query structure.
[bookmark: _Toc7015389]Member position query structure:
	struct CFfexFtdcQryPartPositionField
{
///Start member ID, the member only
TFfexFtdcParticipantIDType PartIDStart;
///End member ID, the member only
TFfexFtdcParticipantIDType PartIDEnd;
///Instrument ID start, optional
TFfexFtdcInstrumentIDType InstIDStart;
///Instrument ID end, optional
TFfexFtdcInstrumentIDType InstIDEnd;
};

nRequestID: The ID of the member position query request, which is specified and managed by the user.
[bookmark: _Toc7015390]Return value:
[bookmark: _Toc7015391]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401117]6.2.35	ReqQryClientPosition method
Client position query request.
Function prototype:
[image:]
Parameter:
pQryClientPosition: The address directing to the client position query structure.
[bookmark: _Toc7015392]Client position query structure:
	struct CFfexFtdcQryClientPositionField
{
///Start member ID, the member only
TFfexFtdcParticipantIDType PartIDStart;
///End member ID, the member only
TFfexFtdcParticipantIDType PartIDEnd;
///Client ID start, optional
TFfexFtdcClientIDType ClientIDStart;
///Client ID end, optional
TFfexFtdcClientIDType ClientIDEnd;
///Instrument ID start, optional
TFfexFtdcInstrumentIDType InstIDStart;
///Instrument ID end, optional
TFfexFtdcInstrumentIDType InstIDEnd;
///Client type, optional
TFfexFtdcClientTypeType ClientType;
};

nRequestID: The ID of the client position query request, which is specified and managed by the user.
[bookmark: _Toc7015393]Return value:
[bookmark: _Toc7015394]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401118]6.2.36	ReqQryInstrument method
Instrument query request.
Function prototype:
[image:]
Parameter:
pQryInstrument: The address directing to the instrument query structure.
[bookmark: _Toc7015395]Instrument query structure:
	struct CFfexFtdcQryInstrumentField
{
///Settlement group ID, optional
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Product group ID, optional
TFfexFtdcProductGroupIDType ProductGroupID;
///Product ID, optional
TFfexFtdcProductIDType ProductID;
///Instrument ID, optional
TFfexFtdcInstrumentIDType InstrumentID;
};

nRequestID: The ID of the instrument query request, which is specified and managed by the user.
[bookmark: _Toc7015396]Return value:
[bookmark: _Toc7015397]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401119]6.2.37	ReqQryInstrumentStatus method
Instrument status query request.
Function prototype:
[image:]
Parameter:
pQryInstrumentStatus: The address directing to the instrument status query structure.
[bookmark: _Toc7015398]Instrument status query structure:
	struct CFfexFtdcQryInstrumentStatusField
{
///Instrument ID start, optional
TFfexFtdcInstrumentIDType InstIDStart;
///Instrument ID end, optional
TFfexFtdcInstrumentIDType InstIDEnd;
};

nRequestID: The ID of the instrument status query request, which is specified and managed by the user.
[bookmark: _Toc7015399]Return value:
[bookmark: _Toc7015400]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401120]6.2.38	ReqQryMarketData method
The member system sends a general market data query request.
Function prototype:
[image:]
Parameter:
pQryMarketData: The address directing to the market data query structure.
[bookmark: _Toc7015401]Market data query structure:
	struct CFfexFtdcQryMarketDataField
{
///Product ID, optional
TFfexFtdcProductIDType ProductID;
///Instrument ID, optional
TFfexFtdcInstrumentIDType InstrumentID;
};

nRequestID: The ID of the user query request, which is specified and managed by the user.
[bookmark: _Toc7015402]Return value:
[bookmark: _Toc7015403]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401121]6.2.39	ReqQryBulletin method
The Exchange’s bulletin query request.
Function prototype:
[image:]
Parameter:
pQryBulletin: The address directing to the bulletin query structure.
[bookmark: _Toc7015404]Bulletin query structure:
	struct CFfexFtdcQryBulletinField
{
///Trading day, optional
TFfexFtdcDateType TradingDay;
///Market ID, optional
TFfexFtdcMarketIDType MarketID;
///Bulletin ID, optional
TFfexFtdcBulletinIDType BulletinID;
///Bulletin type, optional
TFfexFtdcNewsTypeType NewsType;
///Urgency, optional
TFfexFtdcNewsUrgencyType NewsUrgency;
};

nRequestID: The ID of the bulletin query request, which is specified and managed by the user.
[bookmark: _Toc7015405]Return value:
[bookmark: _Toc7015406]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401122]6.2.40	ReqQryMBLMarketData method
Instrument price query request.
Function prototype:
[image:]
Parameter:
pQryMBLMarketData: The address directing to the instrument price query structure.
[bookmark: _Toc7015407]Instrument price query structure:
	struct CFfexFtdcQryMBLMarketDataField
{
///Instrument ID start, optional
TFfexFtdcInstrumentIDType InstIDStart;
///Instrument ID end, optional
TFfexFtdcInstrumentIDType InstIDEnd;
///Direction, optional
TFfexFtdcDirectionType Direction;
};

nRequestID: The ID of the instrument price query request, which is specified and managed by the user.
[bookmark: _Toc7015408]Return value:
[bookmark: _Toc7015409]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401123]6.2.41	ReqQryHedgeVolume method
Hedge volume query request.
Function prototype:
[image:]
Parameter:
pQryHedgeVolume: The address directing to the hedge volume query structure.
[bookmark: _Toc7015410]Hedge volume query structure:
	struct CFfexFtdcQryHedgeVolumeField
{
///Start member ID, the member only
TFfexFtdcParticipantIDType PartIDStart;
///End member ID, the member only
TFfexFtdcParticipantIDType PartIDEnd;
///Client ID start, optional
TFfexFtdcClientIDType ClientIDStart;
///Client ID end, optional
TFfexFtdcClientIDType ClientIDEnd;
///Instrument ID start, optional
TFfexFtdcInstrumentIDType InstIDStart;
///Instrument ID end, optional
TFfexFtdcInstrumentIDType InstIDEnd;
};

nRequestID: The ID of the hedge volume query request, which is specified and managed by the user.
[bookmark: _Toc7015411]Return value:
[bookmark: _Toc7015412]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401124]6.2.42	ReqCombOrderInsert method
This method is not supported in the current version.
The member system sends an unconventional combined order input request.
Function prototype:
[image:]
[bookmark: _Toc7015413]Parameter:
pInputCombOrder: The address directing to the unconventional combined order input structure. Unconventional combined order input structure:
	struct CFfexFtdcInputCombOrderField {
///Combination order ID
TFfexFtdcOrderSysIDType CombOrderSysID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Price
TFfexFtdcPriceType LimitPrice;
///Volume
TFfexFtdcVolumeType VolumeTotalOriginal;
///Local order ID
TFfexFtdcOrderLocalIDType CombOrderLocalID;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
///Instrument ID 1
TFfexFtdcInstrumentIDType InstrumentID1;
///Direction 1
TFfexFtdcDirectionType Direction1;
///Leg multiple 1
TFfexFtdcLegMultipleType LegMultiple1;
///Offset flag 1
TFfexFtdcOffsetFlagType OffsetFlag1;
/// Speculative hedge flag 1
TFfexFtdcHedgeFlagType HedgeFlag1;
///Instrument ID 2
TFfexFtdcInstrumentIDType InstrumentID2;
///Direction 2
TFfexFtdcDirectionType Direction2;
///Leg multiple 2
TFfexFtdcLegMultipleType LegMultiple2;
///Offset flag 1
TFfexFtdcOffsetFlagType OffsetFlag2;
/// Speculative hedge flag 2
TFfexFtdcHedgeFlagType HedgeFlag2;
///Instrument ID 3
TFfexFtdcInstrumentIDType InstrumentID3;
///Direction 3
TFfexFtdcDirectionType Direction3;
///Leg multiple 3
TFfexFtdcLegMultipleType LegMultiple3;
///Offset flag 3
TFfexFtdcOffsetFlagType OffsetFlag3;
/// Speculative hedge flag 3
TFfexFtdcHedgeFlagType HedgeFlag3;
///Instrument ID 4
TFfexFtdcInstrumentIDType InstrumentID4;
///Direction 4
TFfexFtdcDirectionType Direction4;
///Leg multiple 4
TFfexFtdcLegMultipleType LegMultiple4;
///Offset flag 4
TFfexFtdcOffsetFlagType OffsetFlag4;
/// Speculative hedge flag 4
TFfexFtdcHedgeFlagType HedgeFlag4;
};

nRequestID: The ID of the user's unconventional order insert request, which is specified and managed by the user.
[bookmark: _Toc7015414]Return value:
[bookmark: _Toc7015415]	0 represents success.
	-1 represents that the network connection failed;
	-2 represents that the number of unprocessed requests exceeds the number permitted;
	-3 indicates that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401125]6.2.43	ReqQryCombOrder method
This method is not supported in the current version.
Quote query request.
Function prototype:
[image:]
Parameter:
pCombOrder: The address directing to the unconventional combined order structure. Unconventional combined order structure:
	struct CFfexFtdcCombOrderField {
///Trading day
TFfexFtdcDateType TradingDay;
///Settlement group ID
TFfexFtdcSettlementGroupIDType SettlementGroupID;
///Settlement ID
TFfexFtdcSettlementIDType SettlementID;
///Combination order ID
TFfexFtdcOrderSysIDType CombOrderSysID;
///Member ID
TFfexFtdcParticipantIDType ParticipantID;
///Client ID
TFfexFtdcClientIDType ClientID;
///User ID
TFfexFtdcUserIDType UserID;
///Price
TFfexFtdcPriceType LimitPrice;
///Volume
TFfexFtdcVolumeType VolumeTotalOriginal;
///Local order ID
TFfexFtdcOrderLocalIDType CombOrderLocalID;
///Business unit
TFfexFtdcBusinessUnitType BusinessUnit;
///Instrument ID 1
TFfexFtdcInstrumentIDType InstrumentID1;
///Direction 1
TFfexFtdcDirectionType Direction1;
///Leg multiple 1
TFfexFtdcLegMultipleType LegMultiple1;
///Offset flag 1
TFfexFtdcOffsetFlagType OffsetFlag1;
/// Speculative hedge flag 1
TFfexFtdcHedgeFlagType HedgeFlag1;
///Instrument ID 2
TFfexFtdcInstrumentIDType InstrumentID2;
///Direction 2
TFfexFtdcDirectionType Direction2;
///Leg multiple 2
TFfexFtdcLegMultipleType LegMultiple2;
///Offset flag 1
TFfexFtdcOffsetFlagType OffsetFlag2;
/// Speculative hedge flag 2
TFfexFtdcHedgeFlagType HedgeFlag2;
///Instrument ID 3
TFfexFtdcInstrumentIDType InstrumentID3;
///Direction 3
TFfexFtdcDirectionType Direction3;
///Leg multiple 3
TFfexFtdcLegMultipleType LegMultiple3;
///Offset flag 3
TFfexFtdcOffsetFlagType OffsetFlag3;
/// Speculative hedge flag 3
TFfexFtdcHedgeFlagType HedgeFlag3;
///Instrument ID 4
TFfexFtdcInstrumentIDType InstrumentID4;
///Direction 4
TFfexFtdcDirectionType Direction4;
///Leg multiple 4
TFfexFtdcLegMultipleType LegMultiple4;
///Offset flag 4
TFfexFtdcOffsetFlagType OffsetFlag4;
/// Speculative hedge flag 4
TFfexFtdcHedgeFlagType HedgeFlag4;
///Order source
TFfexFtdcOrderSourceType OrderSource;
///Volume traded today
TFfexFtdcVolumeType VolumeTraded;
///Remaining volume
TFfexFtdcVolumeType VolumeTotal;
///Order date
TFfexFtdcDateType InsertDate;
///Insert time
TFfexFtdcTimeType InsertTime;
///Settlement member ID
TFfexFtdcParticipantIDType ClearingPartID;
};

	///Direction type 1
[image:]
///Leg multiple 1
[image:]
/// Offset flag 1
[image:]
///Hedge flag 1
[image:]
///Instrument ID 2
[image:]
///Direction type 2
[image:]
///Leg multiple 2
[image:]
/// Offset flag 2
[image:]
///Hedge flag 2
[image:]
///Instrument ID 3
[image:]
///Direction type 3
[image:]
///Leg multiple 3
[image:]
/// Offset flag 3
[image:]
///Hedge flag 3
[image:]
///Instrument ID 4
[image:]
///Direction type 4
[image:]
///Leg multiple 4
[image:]
/// Offset flag 4
[image:]
///Hedge flag 4
[image:]
/// Order source
[image:]
///Volume traded
[image:]
/// Volume total
[image:]
/// Insert date
[image:]
///Insert time
[image:]
///Clearing member ID
[image:]
};

nRequestID: The ID of the user's quote query request, which is specified and managed by the user.
Return value:
■	0 represents success.
■	-1 represents that the network connection failed;
■	-2 represents that the number of unprocessed requests exceeds the number permitted;
■	-3 represents that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401126]6.2.44	ReqAdminOrderlnsert method
The credit limit can be initialized, adjusted and canceled through AdminOrder. It cannot be adjusted before initialization. Resetting directly without canceling is allowed. The amount of credit adjustment can be positive or negative. A positive value indicates increased credit limit, and a negative one indicates reduced credit limit. Cancelling the credit limit is equivalent to clearing it, which is always allowed.
Function prototype:
[image:]
Parameter:
plnputAdminOrder: The address directing to the administrator's order input structure. The InstrumentlD field in the structure does not need to be filled.
Structure of administrator's order input:
	[image:]
{
///Instrument ID
[image:]
/// Administrator's order command
[image:]
///Clearing member lD
[image:]
///Member lD
[image:]
///Amount
[image:]
///Settlement group ID
[image:]

nRequestID: The ID of the administrator's order input request, which is specified and managed by the user.
Return value:
■	0 represents success.
■	-1 represents that the network connection failed;
■	-2 represents that the number of unprocessed requests exceeds the number permitted;
■	-3 represents that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401127]6.2.45	ReqQryCreditLimit method
Credit limit query request.
Function prototype:
[image:]
Parameter:
pQryCreaditLimit: The address directing to the credit limit query structure
Credit limit query structure
	[image:]

	///Member lD
	

	[image:]

	///Clearing member lD
	

	[image:]

nRequestID: The ID of the credit limit query request, which is specified and managed by the user.
Return value:
■	0 represents success.
■	-1 represents that the network connection failed;
■	-2 represents that the number of unprocessed requests exceeds the number permitted;
■	-3 represents that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401128]6.2.46	ReqMarginCombAction method
Through MarginCombAction, request for a combined single-leg position under the trade ID, or a split of the combined position under the trade ID.
Function prototype:
[image:]
Parameter:
pMarginCombAction: The address directing to the position combining/split request structure.
Structure of position combining / split request:
	[image:]
/// Member ID
[image:]
/// User ID
[image:]
///Client ID
[image:]
///Action local ID
[image:]
///Combined instrument ID
[image:]
///Combination volume
[image:]
///Combination direction
[image:]

nRequestID: The ID of the position combining/split request, which is specified and managed by the user.
Return value:
■	0 represents success.
■	-1 represents that the network connection failed;
■	-2 represents that the number of unprocessed requests exceeds the number permitted;
■	-3 represents that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401129]6.2.47	ReqQryPartClientCombPosition method
Trade ID combined position query request.
Function prototype:
[image:]
Parameter:
pQryPartClientCombPosition: The address directing to the structure of trade ID combined position query.
Structure of trade ID combined position query:
	[image:]
/// Member ID start
[image:]
/// Member ID end
[image:]
///Client ID start
[image:]
/// Client ID end
[image:]
///Combined instrument ID start
[image:]
///Combined instrument ID end
[image:]

nRequestID: The ID of the trade ID combined position query request, which is specified and managed by the user.
Return value:
■	0 represents success.
■	-1 represents that the network connection failed;
■	-2 represents that the number of unprocessed requests exceeds the number permitted;
■	-3 represents that the number of requests sent per second exceeds the number permitted.
[bookmark: _Toc8401130]6.2.48	ReqQryPartClientLegPosition method
Trade ID single-leg position query request.
Function prototype:
[image:]
Parameter:
pQryPartClientLegPosition: The address directing to the structure of the trade ID single-leg position query request.
Trade ID single-leg position query structure:
	[image:]
/// Member ID start
[image:]
/// Member ID end
[image:]
///Client ID start
[image:]
/// Client ID end
[image:]
///Leg instrument ID start
[image:]
///Leg instrument ID end
[image:]

nRequestID: The ID of the trade ID single-leg position query request, which is specified and managed by the user.
Return value:
■	0 represents success.
■	-1 represents that the network connection failed;
■	-2 represents that the number of unprocessed requests exceeds the number permitted;
■	-3 represents that the number of requests sent per second exceeds the number permitted.

[bookmark: _Toc8401131]Chapter 7	Development Example
	[image:]
//— An example is presented to explain the use of the CFfexFtdcTraderApi and CFfexFtdcTraderSpi interfaces. //This example will demonstrate the process of an order input action
[image:]
// Sign indicating whether the order input is completed
[image:]
/Member ID
[image:]
//User ID
[image:]
public: // Constructor, a valid pointer to the CFfexFtdcMduserApi instance is needed
[image:]
//When the member system establishes a communication connection with the trading system, the member system needs to log in.
[image:]
//This method will be used when the member system is disconnected from the trading system.
[image:]
//When this happens, the API will automatically reconnect and the member system may take no action.
[image:]
//When the member system sends a login request, the method will be used to notify the member system whether the login is successful.
[image:]

	[image:]
// If login failed, the member system needs to handle the error
[image:]
// If login succeeded, it will send an order input request
[image:]
//Member ID
[image:]
//Client ID
[image:]
//User ID
[image:]
//Instrument ID
[image:]
// Order price condition
[image:]
//Direction type
[image:]
//Combined offset flag
[image:]
// Combined hedge flag
[image:]
//Price
[image:]
//Volume
[image:]
// Validity type
[image:]
// GTD date
[image:]
// Volume type
[image:]
//Minimum volume
[image:]
//Triggering conditions
[image:]
//Stop price
[image:]
//Forced close reason
[image:]
//Local order ID
[image:]
//Automatic suspension flag
[image:]
// Order input response
[image:]
// Output order input results
[image:]
//Notify the completion of order input
[image:]

	///Order return
[image:]
// Notice of error for user request
[image:]
// Member system needs to handle the error
[image:]
// Pointer to the CFfexFtdcMduserApi instance
[image:]
// Generate a CFfexFtdcMduserApi instance
[image:]
// Generate an instance of event processing
[image:]
// Register an instance of event processing
[image:]
//Subscribes to private flow
// TERT RESTART: Start retransmission from the current trading day
// TERT RESUME: Resume transmission from where it was left
// TERT QUICK: Only transmit the private flow content after login
[image:]
// Subscribe to public flow
// TERT RESTART: Start retransmission from the current trading day
// TERT_RESUME: Resume transmission from where it was left
// TERT QUICK: Only transmit the private flow content after login
[image:]
// Set the heartbeat timeout
[image:]
// Set the address of the trading system’s front-end Name Server
[image:]
// The member system establishes a connection with the trading system
[image:]
// Member system waits for the order action to complete
[image:]
// Release the API instance
[image:]

[bookmark: _Toc8401132]Chapter 8	Appendix
[bookmark: _Toc8401133]8.1	List of Errors
	Error No.
	Error info
	Cause

	1
	Incorrect session
	The session is found illegal in the actions

	2
	Cannot find the instrument
	Cannot find the instrument when inserting an order, quote, OTC order, or execution order

	3
	Cannot find the member
	Cannot find the member in the actions

	4
	Cannot find the client
	Cannot find the client in the actions

	6
	Order field error
	When inserting an order, the field value in the order is found illegal (the enumerated value is out of bounds)

	
	
	When inserting the order, it is found that the reason for forced close was set in a non-forced close order.

	7
	Quote field error
	When inserting a quote, the field value in the quote is found illegal (the enumerated value is out of bounds)

	8
	Order action field error
	During the order action, the field value in the order action is found illegal (the enumerated value is out of bounds)

	9
	Quote action field error
	During the quote action, the field value in the quote action is found illegal (the enumerated value is out of bounds)

	12
	Repeated order
	Repeated local quote number is found when inserting an order or non-standard combination order

	13
	Repeated quote
	Repeated local quote number is found when inserting a quote

	15
	The client did not open an account with the member
	During the actions, it is found that the designated client did not open an account with the designated member.

	16
	IOC in the continuous trading stage
	Attempting to insert an IOC order during a non-continuous trading stage

	17
	GFA needs to be in the call auction stage
	Attempting to insert the GFA's order in the call auction stage

	18
	Market price orders cannot be queued
	When inserting a market price order, the time condition is found not to be IOC.

	19
	The quantity constraint should be on the IOC order
	When inserting an order with quantity constraint that is not an arbitrary number, the time condition is found not to be IOC.

	20
	GTD order expired
	When inserting a GTD order, it is found expired.

	21
	The minimum quantity is greater than the number of orders
	When inserting the order with the minimum quantity condition, the minimum quantity is found to be greater than the number of orders.

	22
	The Exchange’s data is not synchronized
	When performing various business actions, it is found that the Exchange's data has not been synchronized.

	23
	The settlement group’s data is not synchronized
	When performing various business actions, it is found that the data of the settlement group has not been synchronized.

	24
	Cannot find the order
	When performing an order action, it is found that the order to be operated cannot be found.

	25
	Cannot find the quote
	When performing a quote action, it is found that the quote to be operated cannot be found.

	26
	The current status prohibits this action
	When inserting an order, it is found that the instrument status is not continuous trade, call auction order or call auction balance.

	
	
	During an order action, for activation, it is found that the instrument status is not continuous trade, call auction order or call auction balance. For other actions, for non-administrator users, it is found that the instrument status is not continuous trade or call auction order.
For administrator users
For the withdrawal or suspension action, it is found that the instrument status is closed.
For other actions, it is found that the instrument status is not a continuous trade or call
auction order

	
	
	When inserting an OTC order, it is found that the instrument status is not continuous trade.

	27
	Illegal instrument status migration
	When switching the instrument status, it is found that this migration did not meet the trading status migration regulations.

	28
	The order has been fully filled
	During the order action, it is found that the order has been fully filled.

	29
	The order has been revoked
	During the order action, the order is found to have been revoked.

	31
	Insufficient client position when closing
	During the actions that may result in closing, insufficient client position is found

	32
	Exceeded client position limit
	During the actions that may result in opening, the client's speculative position limit is exceeded

	34
	Exceeded member position limit
	During the actions that may result in opening, the member's position limit is exceeded

	35
	Cannot find the account
	During the actions, cannot find the account that should be used for this action

	36
	Insufficient funds
	During the actions, it is found that there are not enough funds in the account

	37
	Incorrect quantity
	During order insert, order action, and OTC order insert, , the quantity is not a positive integer multiple of the minimum order quantity, or exceeds the maximum order quantity.

	45
	The settlement group’s initialization status is incorrect.
	When the user logs in, it is found that no settlement group data has been synchronized.

	48
	Price is not a multiple of the smallest unit
	In the actions, the price is not an integer multiple of the minimum unit of variation of the instrument.

	49
	Price exceeds limit up
	In the actions, the price is higher than the instrument's limit up

	50
	Price falls below the limit down
	In the actions, the price is lower than the instrument's limit down

	51
	No trading rights
	During the actions, the member, the client or the trader is found to have no trading rights for specified instrument.

	52
	Can only close the position
	When performing the actions that may result in opening position, the member, the client or the trader is found to have the rights to close position only.

	53
	No such trading role
	When inserting an order, an OTC order, or a combined order, the member does not have the corresponding trading role for the client on the specified instrument.

	57
	Cannot operate for other members
	In the actions, it is found that the user operates for other member who is not his or her own.

	58
	User does not match
	During the actions, it is found that the operating user does not match that in the session.

	59
	Repeated login of user
	When the user logs in, it is found that this user has already logged in.

	60
	Incorrect username or password
	When the user logs in or changes the password, the user name is not found or the password is incorrect.

	62
	User is not active
	When the user logs in, the user is found to be inactive.

	64
	User does not belong to this member
	When the user logs in, it is found that the user does not belong to the specified member.

	65
	Wrong login IP address
	The user's IP address is found illegal when logging in.

	67
	Did not log in as the user
	When the user logs out, it is found that the user did not log in as the user

	66
	User has not logged in
	In the actions, it is found that the user did not log in.

	68
	Did not log in as the member
	When the user logs out, forcibly logs out, or modifies the password, it is found that the user did not log in as the member.

	70
	Quote has been cancelled
	During the quote action, the quote is found to have been cancelled.

	76
	The order has been suspended
	When suspending the order, it is found that the order has been suspended.

	77
	The order has been activated
	When activating the order, it is found that the order has been activated.

	78
	No date specified for GTD order
	No GTD date specified when inserting a GTD order

	79
	Unsupported order type
	When inserting various types of orders, it is found that the Exchange does not currently support such order types.

	80
	User does not have this right
	Ordinary users are performing actions that require administrator rights

	83
	Stop orders are only used for continuous trading
	Attempting to insert a stop order during a non-continuous trading stage

	84
	The stop loss order needs to be IOC or GFD
	When inserting a stop order, the time condition is found to be neither IOC nor GFD.

	89
	Execution order field error
	When inserting an execution order, it is found that the field value in the execution order is illegal (the enumerated value is out of bounds)

	90
	Execution order action field error
	When performing the execution order action, it is found that the field value in the execution order action is illegal (the enumerated value is out of bounds)

	91
	Repeated execution order
	Repeated local execution order number is found when inserting an execution order

	92
	Execution order has been cancelled
	When performing the execution order action, it is found that the execution order has been cancelled

	93
	Cannot find the execution order
	When performing the execution order action, it is found that the execution order to be operated cannot be found.

	94
	Execution order can only be used on options
	When inserting an execution order, the instrument is found to be a non-option instrument

	95
	Stop order must state the stop price
	When inserting a stop order, it is found that there is no specified stop price.

	96
	Insufficient hedge volume
	Insufficient hedge volume found with clients in the actions that may result in open position

	97
	Repeated action
	The local action number is repeated when performing an order action, quote action, or execution order action

	99
	Cannot operate for other users
	During an order action, it is found that the unauthorized user attempts to operate the order inserted by other users of the member.

	100
	Wrong user type
	When the trader logs in, the user type is found to be a market data user.

	101
	Settlement member cannot trade
	During the order action, the member type is found to be "special settlement member"

	102
	Unable to find corresponding settlement member
	When performing an order action, quote action, or execution order action, the operating member is found to have no corresponding settlement member.

	103
	The current hedge position cannot be closed
	Attempt to insert a closing order into the hedge position

	104
	Unknown management order
	Cannot recognize the order type when receiving a management order

	106
	Repeated session
	When logging in, it is found that the user has logged in successfully and the session has been established.

	107
	No permission for this feature
	When the user performs actions such as login and order, the user is found to have no corresponding permission.

	108
	Only settlement member can make this action
	When initializing and adjusting the credit limit, it is found that the user is not a settlement member.

	109
	Settlement member does not match
	When initializing and adjusting the credit limit, it is found that the user cannot find the settlement member or the corresponding settlement member is not the right member.

	110
	Management order field error
	An error in the order field is found when initializing and adjusting the credit limit

	111
	Insufficient credit limit
	During the order action, the user's member credit limit is found to be insufficient.

	113
	Credit limit has not been initialized
	When adjusting the credit limit, it is found that the member credit limit to be adjusted has not been initialized.

	114
	The best price order cannot be queued
	When inserting the best price order, the time condition is found not to be IOC.

	121
	No quote permission
	When receiving a request for quote, it is found that the client does not have the right to quote as a market maker.

	122
	Inquiry field error
	An error in the inquiry field is found when receiving an inquiry request

	123
	Inquiry field cannot be empty
	When receiving the inquiry request order, it is found that the client number field in the order is empty.

	124
	Inquiring member field cannot be empty
	When receiving the inquiry request order, it is found that the member number field in the order is empty.

	125
	Price exceeds the fluctuation belt
	When performing an order action, it is found that the price of the order is higher than the fluctuation belt’s upper limit.

	126
	Price falls below the fluctuation belt’s lower limit
	When performing an order action, it is found that the price of the order is lower than the fluctuation belt’s lower limit

	127
	Market price order needs to be in continuous trading stage
	During an order action, it is found that the order instrument is not in the “continuous trading stage”, and the order price condition is not “limit order”

	128
	Arbitrary price order’s validity period is incorrect
	During an order action, the time condition of the market price order is found to be neither IOC nor GFD.

	129
	Best price order’s validity period is incorrect
	During an order action, the time condition of the best price order is found to be neither IOC
nor GFD

	130
	Five-price order’s validity period is incorrect
	During an order action, the time condition of the five-price order is found to be neither IOC nor GFD.

	131
	Insufficient combined positions
	When performing forced closing order action, it is found that the single-leg position on the instrument to be closed is still insufficient after the combined position is split.

	132
	Insufficient single-leg position in combined position
	When performing order closing, withdrawal, and manual combination, it is found that the instrument’s single-leg position is less than the closing position, released freezing position or combination lots

	133
	Unsupported combination action direction
	When receiving the client’s position combination/split request, it is found that the combination action direction is not “combination or split”

	134
	No combination permission
	When receiving the client’s position combination/split request, it is found that the client margin collection type is not “manual strategy” or “manual strategy big side”

	135
	Combination rule does not exist
	When receiving the client’s position combination/split request, it is found that the combination rule does not exist or there is no leg

	136
	Combination’s single-leg margin collection type is different
	When receiving the client’s position combination/split request, it is found that the two-leg margin collection is inconsistent.

	137
	Combined instrument’s margin rate not found
	When receiving the client’s position combination/split request, it is found that the margin rate for the combined instrument cannot be found.

	138
	Order triggered self-trade
	Self-trade of two orders from the same client occurred, and the latter order was returned as a wrong order.

	139
	Exceeds the limit of opening lots
	The client’s number of opening lots on the day exceeds the maximum limit for the day specified by the Exchange.

	143
	Failed the OTC counterparty's risk control check
	The OTC trading passed the local member's risk control check, but failed to pass the counterparty's risk control check. The error number will be sent to the party who passed the member's risk control check, and the actual specific error number will be sent to the party that failed the Exchange’s check

	144
	Failed OTC counterparty’s trading check
	The OTC trading passed the local Exchange’s check, but failed to pass the counterparty Exchange’s check. The error number will be sent to the party who passed the Exchange’s check, and the actual specific error number will be sent to the party that failed the Exchange’s check

The error number after 900 is the error number of the negotiation platform:
	Error No.
	Error info
	Cause

	901
	On current trading day... exchange for physicals reporting cannot be conducted
	When the negotiation platform performs the OTC trading check, exchange for physicals reporting cannot be conducted on the current trading day.

	902
	The reporting time is not within the specified range.
	When the negotiation platform performs the OTC trading check,, the reporting time is not within the specified range.

	903
	Spot trading date is different
	When the negotiation platform performs the OTC trading check, one time of exchange for physicals may include multiple spot trades. The spot trading date of the multiple spot trades must be the same; otherwise the error info will be issued.

	904
	Cross-date exchange for physicals reporting cannot exceed the next day...
	When the negotiation platform performs the OTC trading check, the cross-date exchange for physicals cannot exceed the specified time on the next day.

	905
	Instrument...cannot be used for exchange for physicals
	When the negotiation platform performs the OTC trading check, the reported instrument cannot be used for exchange for physicals

	906
	The agreed date cannot be less than the previous trading day
	When the negotiation platform performs the OTC trading check, the agreed date cannot be less than the previous trading day.

	907
	The agreed date cannot be greater than the current trading day
	When the negotiation platform performs the OTC trading check, the agreed date cannot be greater than the current trading day.

	908
	The agreed date is inconsistent with the spot trading date
	When the negotiation platform performs the OTC trading check, the agreed date is inconsistent with the spot trading date.

	909
	The agreed time cannot be greater than the reporting time
	When the negotiation platform performs the OTC trading check, the agreed time cannot be greater than the reporting time.

	910
	Currently exchange for physicals reporting cannot be conducted
	When the negotiation platform performs the OTC trading check, currently exchange for physicals reporting cannot be conducted.

	911
	Spot trade number: repeated with the exchange for physicals reporting on the same day
	When the negotiation platform performs the OTC trading check, the spot trade number is repeated with the exchange for physicals reporting on the same day

	Error No.
	Error info
	Cause

	912
	Spot trade number... repeated with the exchange for physicals reporting of the previous date
	When the negotiation platform performs the OTC trading check, the spot trade number is repeated with the exchange for physicals reporting of the previous date

	913
	The client numbers of the two parties cannot be the same
	When the negotiation platform performs the OTC trading check, the client numbers of the two parties cannot be the same.

	914
	Multiple spot trades’ directions in exchange for physicals are inconsistent
	When negotiating the platform to do OTC transaction inspection, multiple spot trades’ directions in exchange for physicals are inconsistent

	915
	In the exchange for physicals reporting, the spot trades’ direction is wrong.
	When the negotiation platform performs the OTC trading check, in the exchange for physicals reporting, the spot trades’ direction is wrong.

	916
	In the exchange for physicals reporting, the futures trades’ direction is wrong.
	When the negotiation platform performs the OTC trading check, in the exchange for physicals reporting, the futures trades’ direction is wrong.

	917
	In the exchange for physicals reporting, the directions of spot futures trades are the same
	When the negotiation platform performs the OTC trading check, In the exchange for physicals reporting, the directions of spot futures trades are the same

	918
	Spot...cannot be included in the exchange for physicals
	When the negotiation platform performs the OTC trading check, the spot cannot be included in the exchange for physicals

	919
	Unincorporated investors cannot conclude a transaction by means of exchange for physicals
	When the negotiation platform performs the OTC trading check, unincorporated investors cannot conclude a transaction by means of exchange for physicals

	920
	(Specific reasons for failure to pass the Exchange’s check)
	When the Exchange failed to pass the check, the business personnel manually enter the error info.

	951
	Members are not allowed to participate in the trade of exchange for physicals
	When the negotiation platform performs the OTC trading check, the member is not allowed to participate in the trade of exchange for physicals

	952
	Clients are not allowed to participate in the trade of exchange for physicals
	When the negotiation platform performs the OTC trading check, the client is not allowed to participate in the trade of exchange for physicals.

	954
	Client…no trading rights
	The client has no trading rights when the negotiation platform performs the OTC trading check

[bookmark: _Toc8401134]8.2	List of Enumerated Codes
	Sequence number
	Enumeration description
	Enumeration prefix
	Enumeration name
	Code description
	Code name
	Code value

	1
	Trade
	ER
	TradingRole
	Broker
	Broker
	1

	
	
	
	
	Host
	Host
	2

	
	
	
	
	Market maker
	MarketMaker
	3

	2
	User type
	UT
	UserType
	Trader
	Trader
	1

	
	
	
	
	Trade manager
	TradeManager
	2

	
	
	
	
	Market data user
	MDUser
	3

	
	
	
	
	Unauthorized trader
	SingleTrader
	4

	3
	Product class
	PC
	ProductClass
	Futures
	Futures
	1

	
	
	
	
	Options
	Options
	2

	
	
	
	
	Combination
	Combination
	3

	
	
	
	
	Spot
	Spot
	4

	
	
	
	
	Exchange for physicals
	EFP
	5

	4
	Option type
	OT
	OptionsType
	Not options
	NotOptions
	0

	
	
	
	
	Call options
	CallOptions
	1

	
	
	
	
	Put options
	PutOptions
	2

	Sequence number
	Enumeration description
	Enumeration prefix
	Enumeration name
	Code description
	Code name
	Code value

	5
	Instrument status
	IS
	InstrumentStatu
s
	Before trading
	BeforeTrading
	0

	
	
	
	
	No trading
	NoTrading
	1

	
	
	
	
	Continuous
	Continous
	2

	
	
	
	
	Auction ordering
	AuctionOrdering
	3

	
	
	
	
	Auction balance
	AuctionBalance
	4

	
	
	
	
	Auction match
	AuctionMatch
	5

	
	
	
	
	Closed
	Closed
	6

	6
	Direction
	D
	Direction
	Buy
	Buy
	0

	
	
	
	
	Sell
	Sell
	1

	7
	Position type
	PT
	PositionType
	Net position
	Net
	1

	
	
	
	
	Gross position
	Gross
	2

	8
	Position direction
	PD
	PosiDirection
	Net
	Net
	1

	
	
	
	
	Long
	Long
	2

	
	
	
	
	Short
	Short
	3

	9
	Exchange data sync status
	EDS
	ExchangeDataS
yncStatus
	Asynchronous
	Asynchronous
	1

	
	
	
	
	Synchronizing
	Synchronizing
	2

	
	
	
	
	Synchronized
	Synchronized
	3

	10
	Settlement group data sync status
	SGDS
	SGDataSyncSta
tus
	Asynchronous
	Asynchronous
	1

	
	
	
	
	Synchronizing
	Synchronizing
	2

	
	
	
	
	Synchronized
	Synchronized
	3

	11
	Hedge flag
	HF
	HedgeFlag
	Speculation
	Speculation
	1

	
	
	
	
	Arbitrage
	Arbitrage
	2

	
	
	
	
	Hedge
	Hedge
	3

	
	
	
	
	Market maker
	MarketMaker
	4

	12
	Client type
	CT
	ClientType
	Natural person
	Person
	0

	
	
	
	
	Company
	Company
	1

	
	
	
	
	Investment fund
	Fund
	2

	13
	Reasons for entering instrument status
	IER
	InstStatusEnter
Reason
	Automatic switching
	Automatic
	1

	
	
	
	
	Manual switching
	Manual
	2

	
	
	
	
	Fuse
	Fuse
	3

	
	
	
	
	Fuse manual
	FuseManual
	4

	14
	Order price type
	OPT
	OrderPriceType
	Any price
	AnyPrice
	1

	
	
	
	
	Limit price
	LimitPrice
	2

	
	
	
	
	Best price
	BestPrice
	3

	
	
	
	
	Five-level price
	FiveLevelPrice
	4

	15
	Offset flag
	OF
	OffsetFlag
	Open
	Open
	0

	
	
	
	
	Close
	Close
	1

	
	
	
	
	Forced close
	ForceClose
	2

	
	
	
	
	Close
	CloseToday
	3

	
	
	
	
	Close yesterday
	CloseYesterday
	4

	16
	Forced close reason
	FCC
	ForceCloseReas
on
	Not forced close
	NotForceClose
	0

	
	
	
	
	Insufficient funds
	LackDeposit
	1

	
	
	
	
	Client over position
	ClientOverPositionLimit
	2

	Sequence number
	Enumeration description
	Enumeration prefix
	Enumeration name
	Code description
	Code name
	Code value

	
	
	
	
	Member over position
	MemberOverPositionLimit
	3

	
	
	
	
	Not multiple
	NotMultiple
	4

	
	
	
	
	Violation
	Violation
	5

	
	
	
	
	Other
	Other
	6

	17
	Order status
	OST
	OrderStatus
	All traded
	AllTraded
	0

	
	
	
	
	Part traded queuing
	PartTradedQueueing
	1

	
	
	
	
	Part traded not queuing
	PartTradedNotQueueing
	2

	
	
	
	
	No trade not queueing
	NoTradeQueueing
	3

	
	
	
	
	No trade not queueing
	NoTradeNotQueueing
	4

	
	
	
	
	Canceled
	Canceled
	5

	18
	Order type
	ORDT
	OrderType
	NORMAL
	Normal
	0

	
	
	
	
	Derive from quote
	DeriveFromQuote
	1

	
	
	
	
	Derive from combination
	DeriveFromCombinati
on
	2

	
	
	
	
	Derive from block trade
	DeriveFromBlockT rade
	3

	
	
	
	
	Derive from exchange for physicals trade
	DeriveFromEFPT rade
	4

	19
	OTC order status
	OOS
	OTCOrderStatu
s
	Inputted
	Inputed
	0

	
	
	
	
	Confirmed
	Confirmed
	1

	
	
	
	
	Cancelled
	Canceled
	2

	
	
	
	
	Refused
	Refused
	3

	20
	Time condition
	TC
	TimeCondition
	Immediate or cancel
	IOC
	1

	
	
	
	
	Good for section
	GFS
	2

	
	
	
	
	Good for day
	GFD
	3

	
	
	
	
	Good till date
	GTD
	4

	
	
	
	
	Good till cancel
	GTC
	5

	
	
	
	
	Good for auction
	GFA
	6

	21
	Volume condition
	VC
	VolumeConditi
on
	Any volume
	AV
	1

	
	
	
	
	Minimum volume
	MV
	2

	
	
	
	
	Cumulative volume
	cv
	3

	22
	Contingent condition
	CC
	ContingentCon
dition
	Immediately
	Immediately
	1

	
	
	
	
	Touch
	Touch
	2

	23
	Action flag
	AF
	ActionFlag
	Delete
	Delete
	0

	
	
	
	
	Suspend
	Suspend
	1

	
	
	
	
	Active
	Active
	2

	
	
	
	
	Modify
	Modify
	3

	24
	Order source
	OSRC
	OrderSource
	Participant
	Participant
	0

	
	
	
	
	Administrator
	Administrator
	1

	25
	Trade type
	TRDT
	TradeType
	Common
	Common
	0

	
	
	
	
	Options execution
	OptionsExecution
	1

	
	
	
	
	OTC
	OTC
	2

	
	
	
	
	Exchange for physicals derived
	EFPDerived
	3

	
	
	
	
	Combination derived
	CombinationDerived
	4

	Sequence number
	Enumeration description
	Enumeration prefix
	Enumeration name
	Code description
	Code name
	Code value

	
	
	
	
	Block trade
	BlockTrade
	8

	
	
	
	
	Exchange for physicals trade
	EFPTrade
	9

	26
	Price source
	PSRC
	PriceSource
	Last price
	LastPrice
	0

	
	
	
	
	Buy
	Buy
	1

	
	
	
	
	Sell
	Sell
	2

	
	
	
	
	OTC
	OTC
	3

	27
	Account status
	ACCS
	AccountStatus
	Enable
	Enable
	0

	
	
	
	
	Disable
	Disable
	1

	28
	Member type
	MT
	MemberType
	Trading
	Trading
	0

	
	
	
	
	Settlement
	Settlement
	1

	
	
	
	
	Compositive
	Compositive
	2

	29
	Execution result
	OER
	ExecResult
	Not executed
	NoExec
	n

	
	
	
	
	Cancelled
	Canceled
	c

	
	
	
	
	OK
	OK
	0

	
	
	
	
	Option positions are not enough
	NoPosition
	1

	
	
	
	
	No enough funds
	NoDeposit
	2

	
	
	
	
	Member does not exist
	NoParticipant
	3

	
	
	
	
	Client does not exist
	No Client
	4

	
	
	
	
	Instrument does not exist
	Noinstrument
	6

	
	
	
	
	No execution right
	NoRight
	7

	
	
	
	
	Invalid volume
	InvalidVolume
	8

	
	
	
	
	Not enough historical trades
	NoEnoughHistoryTrade
	9

	30
	Administrator order command
	AOC
	AdminOrderCommandFlag
	Forced close in delivery month as positions are not integer multiples
	NotMultipleForceClose
	1

	
	
	
	
	Initialize trading member credit limit
	InitCreditLimit
	2

	
	
	
	
	Adjust trading member credit limit
	AlterCreditLimit
	3

	
	
	
	
	Cancel trading member credit limit
	CancelCreditLimit
	4

	31
	Apply for margin combination order
	CA
	CombDirection
	Apply for combination
	Comb
	0

	
	
	
	
	Apply for split combination
	UnComb
	1

[bookmark: _Toc8401135]8.3	Data Type List
	Data type name
	Basic data type
	Data type description

	TFfexFtdcErrorlDType
	Int
	Error ID

	TFfexFtdcPriorityType
	Int
	Priority

	TFfexFtdcSettlementIDType
	Int
	Settlement ID

	TFfexFtdcMonthCountType
	Int
	Number of months

	TFfexFtdcTradingSegmentSNType
	Int
	Trading segment number

	Data type name
	Basic data type
	Data type description

	TFfexFtdcVolumeType
	Int
	Volume

	TFfexFtdcTimeSortIDType
	Int
	Sequence number queued by time

	TFfexFtdcFrontIDType
	Int
	Front-end processor ID

	TFfexFtdcSessionIDType
	Int
	Session ID

	TFfexFtdcSequenceNoType
	Int
	Sequence number ID

	TFfexFtdcBulletinIDType
	Int
	Bulletin ID

	TFfexFtdcInformationIDType
	Int
	Information ID

	TFfexFtdcMillisecType
	Int
	Time (millisecond)

	TFfexFtdcVolumeMultipleType
	Int
	Instrument volume multiple

	TFfexFtdcImplyLevelType
	Int
	Number of derived levels

	TFfexFtdcStartPosType
	Int
	Start position

	TFfexFtdcAliasType
	char[3]
	Alias

	TFfexFtdcOriginalTextType
	char[3]
	Original text

	TFfexFtdcParticipantIDType
	char[11]
	Member ID

	TFfexFtdcParticipantNameType
	char[51]
	Member name

	TFfexFtdcParticipantAbbrType
	char[9]
	Member abbreviation

	TFfexFtdcUserIDType
	char[16]
	User ID

	TFfexFtdcPasswordType
	char[41]
	Password

	TFfexFtdcClientIDType
	char[11]
	Client ID

	TFfexFtdcInstrumentIDType
	char[31]
	Instrument ID

	TFfexFtdcProductIDType
	char[9]
	Product ID

	TFfexFtdcProductNameType
	char[21]
	Product name

	TFfexFtdcExchangeIDType
	char[9]
	Exchange ID

	TFfexFtdcDateType
	char[9]
	Date

	TFfexFtdcTimeType
	char[9]
	Time

	TFfexFtdcInstrumentNameType
	char[21]
	Instrument name

	TFfexFtdcProductGroupIDType
	char[9]
	Product group ID

	TFfexFtdcProductGroupNameType
	char[21]
	Product group name

	TFfexFtdcMarketIDType
	char[9]
	Market ID

	TFfexFtdcSettlementGroupIDType
	char[9]
	Settlement group ID

	TFfexFtdcOrderSysIDType
	char[13]
	Order system ID

	TFfexFtdcOTCOrderSysIDType
	char[13]
	OTC order system ID

	TFfexFtdcExecOrderSysIDType
	char[13]
	Execution order system ID

	TFfexFtdcQuoteSysIDType
	char[13]
	Quote system ID

	TFfexFtdcTradeIDType
	char[13]
	Trade ID

	TFfexFtdcOrderLocalIDType
	char[13]
	Local order ID

	TFfexFtdcComeFromType
	char[21]
	Source

	TFfexFtdcAccountIDType
	char[13]
	Account ID

	TFfexFtdcNewsTypeType
	char[3]
	Bulletin type

	TFfexFtdcAdvanceMonthType
	char[4]
	Advance month

	TFfexFtdcCommodityIDType
	char[9]
	Commodity ID

	TFfexFtdcIPAddressType
	char[16]
	IP address

	TFfexFtdcProductInfoType
	char[41]
	Product information

	Data type name
	Basic data type
	Data type description

	TFfexFtdcProtocolInfoType
	char[41]
	Protocol information

	TFfexFtdcBusinessUnitType
	char[21]
	Business unit

	TFfexFtdcTradingSystemN ameType
	char[61]
	Trading system name

	TFfexFtdcTradingRoleType
	char
	Trading role

	TFfexFtdcUserTypeType
	char
	User type

	TFfexFtdcProductClassType
	char
	Product class

	TFfexFtdcOptionsTypeType
	char
	Option type

	TFfexFtdcInstrumentStatusType
	char
	Instrument status

	TFfexFtdcDirectionType
	char
	Direction

	TFfexFtdcPositionTypeType
	char
	Position type

	TFfexFtdcPosiDirectionType
	char
	Position direction

	TFfexFtdcExchangeDataSyncStatusType
	char
	Exchange data sync status

	TFfexFtdcSGDataSyncStatusType
	char
	Settlement group data sync status

	TFfexFtdcHedgeFlagType
	char
	Hedge flag

	TFfexFtdcClientTypeType
	char
	Client type

	TFfexFtdcInstStatusEnterReasonType
	char
	Reasons for entering instrument status

	TFfexFtdcOrderPriceTypeType
	char
	Order price type

	TFfexFtdcOffsetFlagType
	char
	Offset flag

	TFfexFtdcForceCloseReasonType
	char
	Forced close reason

	TFfexFtdcOrderStatusType
	char
	Order status

	TFfexFtdcOrderTypeType
	char
	Order type

	TFfexFtdcOTCOrderStatusType
	char
	OTC order status

	TFfexFtdcTimeConditionType
	char
	Time condition type

	TFfexFtdcVolumeConditionType
	char
	Volume condition

	TFfexFtdcContingentConditionType
	char
	Contingent condition

	TFfexFtdcActionFlagType
	char
	Action flag

	TFfexFtdcOrderSourceType
	char
	Order source

	TFfexFtdcTradeTypeType
	char
	Trade type

	TFfexFtdcPriceSourceType
	char
	Price source

	TFfexFtdcAccountStatusType
	char
	Account status

	TFfexFtdcMemberTypeType
	char
	Member type

	TFfexFtdcExecResultType
	char
	Execution result

	TFfexFtdcYearType
	Int
	Year

	TFfexFtdcMonthType
	Int
	Month

	TFfexFtdcLegMultipleType
	Int
	Single leg multiple

	TFfexFtdcLegIDType
	Int
	Single leg ID

	TFfexFtdcBoolType
	Int
	Bool type

	TFfexFtdcUserActiveType
	Int
	Trader activity

	TFfexFtdcPriceType
	double
	Price

	TFfexFtdcUnderlyingMultipleType
	double
	Instrument underlying multiple

	TFfexFtdcCombOffsetFlagType
	char[5]
	Combination offset flag

	TFfexFtdcCombHedgeFlagType
	char[5]
	Combination hedge flag

	TFfexFtdcRatioType
	double
	Ratio

	Data type name
	Basic data type
	Data type description

	TFfexFtdcMoneyType
	double
	Money

	TFfexFtdcLargeVolumeType
	double
	Large volume

	TFfexFtdcNewsUrgencyType
	char
	News urgency level

	TFfexFtdcSequenceSeriesType
	short
	Sequence series

	TFfexFtdcCommPhaseNoType
	short
	Communication phase number

	TFfexFtdcContentLengthType
	Int
	Content length

	TFfexFtdcErrorMsgType
	char[81]
	Error info

	TFfexFtdcAbstractType
	char[81]
	Message abstract

	TFfexFtdcContentType
	char[501]
	Message content

	TFfexFtdcURLLinkType
	char[201]
	URL link

	TFfexFtdcIdentifiedCardNoType
	char[51]
	Identified card number

	TFfexFtdcIdentifiedCardNoV1Type
	char[21]
	Original identified card number

	TFfexFtdcPartyNameType
	char[81]
	Participant name

	TFfexFtdcIdCardTypeType
	char[16]
	ID card type

	TFfexFtdcAdminOrderCommandFlagType
	char
	Administrator order command

	TFfexFtdcTradingDayType
	char[9]
	Trading date type

	TFfexFtdcDataCenterIDType
	Int
	Data center ID

	TFfexFtdcRuleTypeType
	char[51]
	Combination rule type

	Copyright Reserved © China Financial Futures Exchange
	Page 1 of 163

image89.png
int RegCombOrderInsert (
CFfexFtdcInputCombOrderField *pInputCombOrder,
int nRequestID

)

image90.png
int RegQryCombOrder (
CFfexFtdcQryCombOrderField *pQryCombOrder,

int nRequestID);

image91.png
TFfexFtdcDirectionType Directionl;

image92.png
TFfexFtdcLegMultipleType LegMultiplel;

image93.png
TFfexFtdcOffsetFlagType Of fsetFlagl;

image94.png
TFfexFtdcHedgeFlagType HedgeFlagl;

image95.png
TFfexFtdcInstrumentIDType InstrumentID2;

image96.png
TFfexFtdcDirectionType Direction2;

image97.png
TFfexFtdcLegMultipleType LegMultiple2;

image98.png
TFfexFtdcOffsetFlagType OffsetFlag2;

image99.png
TFfexFtdcHedgeFlagType HedgeFlag2;

image100.png
TFfexFtdcInstrumentIDType InstrumentID3;

image101.png
TFfexFtdcDirectionType Direction3;

image102.png
TFfexFrdcLegMultipleType LegMultiple:

image103.png
TFfexFtdcOffsetFlagType Of fsetFlag3;

image104.png
TFfexFtdcHedgeFlagType HedgeFlag3;

image105.png
TFfexFtdcInstrumentIDType InstrumentID4;

image106.png
TFfexFtdcDirectionType Direction4;

image107.png
TFfexFtdcLegMultipleType LegMultipled;

image108.png
TFfexFtdcOffsetFlagType OffsetFlag4;

image109.png
TFfexFtdcHedgeFlagType HedgeFlag4;

image110.png
TFfexFtdcOrderSourceType OrderSource;

image111.png
TFfexFtdcVolumeType VolumeTraded;

image112.png
TFfexFtdcVolumeType VolumeTotal;

image113.png
TFfexFtdcDateType InsertDate;

image114.png
TFfexFtdcTimeType InsertTime;

image115.png
TFfexFtdcParticipantIDType ClearingPartID;

image116.png
int ReqAdminOrderInsert (
CFfexFtdcInputAdminOrderField *pInputAdminOrder,
int nRequuestiD) ;

image117.png
struct CFfexFrtdcInputAdminOrderField

image118.png
TFfexFtdcInstrumentIDType InstrumentID,

image2.png

image119.png
TFfexFtdcAdminOrderCommandFlagType AdminOrderCommand;

image120.png
TFfexFrdcParticipantIDIype ClearingPartID;

image121.png
TFfexFtdcParticipantIDType ParticipantID;

image122.png
TFfexFtdcMoneyType Amount,

image123.png
TFfexFtdcSettlementGroupIDType SettlementGrouplD;

image124.png
int ReqQryCreditLimit(
CFfexFtdcQryCreditLimitField *pQryCreaditLimit,
int nRequestID) ;

image125.png
struct CEfexFrdeQryCreditlimitField
1

image126.png
TFfexFtdcParticipantIDType ParticipantID;

image127.png
TFfexFtdcParticipantIDIype ClearingPartID;

image128.png
int ReqMarginCombAction(
CFfexFtdcMarginCombActionField *pMarginCombAction,
int nRequestID) ;

image3.png

image129.png
struct CFfexFtdcMarginCombActionField
1

image130.png
TFfexFtdcParticipantIDType ParticipantID;

image131.png
TFfexFtdcUserIDType UserID;

image132.png
TFfexFtdcClientIDType ClientID;

image133.png
TFfexFtdcOrderLocalIDType ActionLocalID;

image134.png
TFfexFtdcInstrumentIDType CombInstrumentID;

image135.png
TFfexFtdcVolumeType CombVolume;

image136.png
TEfexFrdcCombDirectionType CombDirsction;

image137.png
int ReqQryPartClientCombPosition(
CFfexFtdoQryPartClientCombRositionField *pQryPartClientCombRosition,
int nRequestID)

image138.png
struct CFfexFtdcQryPartClientCombPositionField
1

image4.png
void CFfexFtdcTraderSp.

OnRtnXXX (CFfexFtdcXXXField *pXXX)

image139.png
TFfexFtdcParticipantIDType PartIDStart;

image140.png
TFfexFtdcParticipantIDType PartIDEnd;

image141.png
TFfexFtdcClientIDType ClientIDStart;

image142.png
TFfexFtdcClientIDType ClientIDEnd;

image143.png
TFfexFtdcInstrumentIDType combInstIDStar

image144.png
TFfexFrdcInstrumentIDIype combInstIDEnd:

image145.png
int ReqoryPartClientlLegPosition(
CFfexFtdcQryPartClientlegPositionField *pQryPartClientLegPosition,
int nRequestID)

image146.png
struct CFfexFrdeQryParcClientlegPositionfield
1

image147.png
TFfexFtdcParticipantIDType PartIDStart;

image148.png
TFfexFtdcParticipantIDType PartIDEnd;

image5.png

image149.png
TFfexFtdcClientIDIype ClientIDStart;

image150.png
TFfexFtdcClientIDType ClientIDEnd;

image151.png
TFfexFtdcInstrumentIDType LegInstIDStarct;

image152.png
TFfexFrdelastrumentIDIype LeglastIDEnd;
v

image153.png
// tradeapitest.cpp

image154.png
#include <stdio.h>
finclude <windows.h>
#include "FrdcTraderdpi.h"

image155.png
// Create a manual reset event with no signal
HANDLE g hEvent = CreateSvent (NULL, trus, false, NULL):

image156.png
TFfexFtdcParticipantIDType g_chParticipantID;

image157.png
TFfexFrdcUserIDIype g_chUserID;

class CSimpleHandler : public CFfexFrdcTraderSpi
1

image158.png
CSimpleHandler (CFfexFtdcTraderApi *pUserApi) : m_pUserApi(pUserdpi) {}

~CSimpleHandler() (1

image6.png

image159.png
virtual void OnFrontConnected()

¢
CrfexFrdcReqUserloginField regUserlogin;
1/ get ParticipantiD
Pprints("participantidi®);
scant("s7, &g_chParsicipantiD);
strepy (reqUserlogin.ParticipantID, g_chParsicipantiD);
// get useria
prints("userid:");
scans("s7, &g_chUserID);
strepy (reqUserlogin.UserID, g_chUseriD);
// get password
prints ("password:");
scant("s7, cregUserlogin.Password);

/1 REHERER
m_pUserApi->ReqUserlogin (sreqUserlogin, 0);

image160.png
virtual void OnFrontDisconnected(int nReason)
N

image161.png
printf("OnFrontDisconnected.\n");

image162.png
virtual void OnRspUserlogin(CFfexFtdcRspUserloginField *pRspUserlogin,
CFfexFidcRspInforield fpRspInfs, int nReguestiD, beol blsLast)
¢
prints ("onRspUserlogin:\n®);
prints("ErrorCode=[sd], ErrorMsg=(%s]\n", pRspInfo->ErroriD,
PRspInfo->ErrorMsq) ;
printe("RequestID=[3d], Chain=[3d]\n", nRequestID, bIslast);

image163.png
if (pRspInfo->ErrorID

image164.png
printf("Failsd o login, errorcode=id srrormsg=is requesti
chain=sd", pRspInfo->ErrorlD, pRspInfo->Errcriisg, nRequestiD, blslast);
exit(-1);
¥

image165.png
CFfexFrdcInputOrderField ord;
memset (¢0xd, 0, sizeof(ord)):

image166.png
strcpy (ord.ParticipantID, g_chParticipantID);

image167.png
strcpy(ord.ClientID, "12345");

image168.png
strcpy(ord.UserID, g_chUserID);

image7.png
CFfexFtdcTraderSpi:OnRspOrderinser
CFfexFtdcTraderSpi::OnRtnOrder
CFfexFtdcTraderSpi:OnRtnOrder

>

AN 250, AT —

CFfexFtdcTraderSpi:OnRtnOrder

CFfexFtdcTraderSpi::OnRtnOrder

CFlexFtdcTraderApi: ReqOrerlnsert_ |
CFiexFtdcTraderSpi:0nRtnOder

CFfexFtdcTraderSpi:OnRspOrderlnsert

!

!

I

!

!

|

T

|

|

!

!
i
!

!

|

|

!

!

!

!

|

!

!

!

!

i
=
L

image169.png
strcpy (ord.InstrumentID, "cn0&01");

image170.png
ord.OrderPriceTyps = FFEX FIDC_OFT LimitFrice;

image171.png
ord.Direction = FFEX FIDC_D_Buy:

image172.png
strcpy (ord.CombOffsetFlag,

image173.png
strcpy (ord.CombHedgeFlag,

image174.png
ord.LimitPrice = 50000;

image175.png
ord.VolumeTotalOriginal = 10;

image176.png
ord.TimeCondition = FFEX_FTDC_TC_GFD;

image177.png
strcpy (ord.GIDDate, "")

image178.png
ord.VolumeCondition

FFEX_FTDC_VC_aV:

image8.png
CFfexFtdcTraderSpi:OnRspOrderinser
CFfexFtdcTraderSpi::OnRtnOrder
CFfexFtdcTraderSpi:OnRtnOrder

>

AN 250, AT —

CFfexFtdcTraderSpi:OnRtnOrder

CFfexFtdcTraderSpi::OnRtnOrder

CFlexFtdcTraderApi: ReqOrerlnsert_ |
CFiexFtdcTraderSpi:0nRtnOder

CFfexFtdcTraderSpi:OnRspOrderlnsert

!

!

I

!

!

|

T

|

|

!

!
i
!

!

|

|

!

!

!

!

|

!

!

!

!

i
=
L

image179.png
ord.MinVolume = 0,

image180.png
ord.ContingentCondition = FFEX FIDC_CC_Immediately;

image181.png
ord.StopPrice

image182.png
ord.ForceCloseReason = FFEX FTDC FCC NotForceClose;

image183.png
strcpy (ord.OrderLocalID, "0000000001");

image184.png
ord.IsAutoSuspend

m_pUserApi->ReqOrderInsert (sord, 1);

image185.png
virtual void OnRspOrderInsert(CFfexFrdcInputOrderfield *pInputOrder,
CFfexFrdcRspInfoField pRspInfo, int nRequestiD, bool blslast)
1

image186.png
printf("ErrorCod
PRepInfo->ErrorMsq) ;

#d], ErrorMsg=[%s]\n", pRspInfo->ErrorID,

image187.png
SetEvent (g_hEvent);

image188.png
wirtual void OnRenOrder (CPfexfrdcOrderField ‘pOrdes)
1
eines (“OmRemOzdez:\nt)
e

image9.png
]

image189.png
wirtual void OnRspError (CPfexFrdcRsplnfofield ‘pRsplnfo, int nRequestiD,
et Biaiase) f

eeines (“OmRspEzeer:lat)

Feines (“Erecicoen(aa), Ersessg=(as)\n, sRspinforsZreesid,
Reptnge teesiing ;

i eiimtaa, cnas

d]\n", nRequestID, bIsLast);

image190.png
exiv(-1);

image191.png
(CEfesFrdclzadesipl *m pUsesipi;
b

PR

h

image192.png
CFfexFtdcTraderApi *pUserApi = CFfexFtdcTraderApi:

CreateFtdcTraderapi () ;

image193.png
CSimpleHandler sh(pUserRpi);

image194.png
‘pUserBpi->RegisterSpi(esh);

image195.png
‘PUserApi->SubscribePrivateTopic (TERT_RESUME);

image196.png
pUserRpi->SubscribePublicTopic (TERT_RESUME);

image197.png
pUserApi->SetHeartbeatTimeocut (15);

image198.png
pUserBpi->RegisterNameServer ("tcp://172.16.0.31:17001");

image10.png
]

image199.png
‘PUsexApi—>Init();

image200.png
WaitForSingleObject (g_hEvent, INFINITE);

image201.png
PUserkpi->Releasze();

image11.png
void OnRspForQuote (

CFfexFtdcInputRegForQuoteField *pInputRegForQuote,
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,

bool bIsLast);

image12.png
void OnRspQryClientPosition(

CFfexFtdcRspClientPositionField *pRspClientPosition,
CFfexFtdcRspInfoField *pRsplnfo,
int nRequestID,

bool bIsLast);

image13.png
void OnRspQryInstrument (
CFfexFtdcRspInstrumentField *pRspInstrument,
CFfexFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIslLast);

image14.png
void OnRspQryInstrumentStatus (

CFfexFtdcInstrumentStatusField *pInstrumentStatus,
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,

bool bIsLast);

image15.png
void OnRspQryBulletin (
CFfexFtdcBulletinField *pBulletin,
CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,

bool bIsLast);

image16.png
void OnRspQryMarketData (
CFfexFtdcMarketDataField *pMarketData,
CFfexFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast);

image17.png
void OnRspQryMBIMarketData (
CFfexFtdcMBIMarketDataField *pMBLMarketData,
CFfexFtdcRspInfoField *pRsplInfo,

int nRequestID,

bool bIslLast) ;

image18.png
void OnRspQryHedgeVolume (
CFfexFtdcHedgeVolumeField *pHedgeVolume,
CFfexFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast);

image19.png
void OnRtnTrade (CFfexFtdcTradeField *pTrade);

image20.png
void OnRtnOrder (CFfexFtdcOrderField *pOrder) ;

image21.png
void OnRtnQuote (CFfexFtdcQuoteField *pQuote) ;

image22.png
void OnRtnForQuote (CFfexFtdcInputRegForQuoteField *pRegForQuote) ;

image23.png
void OnRtnExecOrder (CFfexFtdcExecOrderField *pExecOrder) ;

image24.png
void OnRtnInstrumentStatus (CFfexFtdcInstrumentStatusField *pInstrumentStatus) ; I

image25.png
void OnRtnInsInstrument (CFfexFtdcInstrumentField *pInstrument);

image26.png
void OnRtnDelInstrument (CFfexFtdcInstrumentField *pInstrument);

image27.png
void OnRtnInsCombinationleg(CFfexFtdcCombinationLegField *pCombinationleg) ;

image28.png
void OnRtnDelCombinationlLeg (CFfexFtdcCombinationlegField *pCombinationleg) ;

image29.png
void OnRtnBulletin (CFfexFtdcBulletinField *pBRulletin);

image30.png
void OnRtnAliasDefine (CFfexFtdcAliasDefineField *pAliasDefine);

image31.png
void OnRtnFlowMessageCancel (
CFfexFtdcFlowMessageCancelField *pFlowMessageCancel);

image32.png
void OnErrRtnOrderInsert (
CFfexFtdcInputOrderField *pInputOrder,

CFfexFtdcRspInfoField *pRspInfo);

image33.png
void OnErrRtnOrderAction (
CFfexFtdcOrderActionField *pOrderAction,

CFfexFtdcRspInfoField *pRspInfo);

image34.png
void OnErrRtnQuoteInsert (
CFfexFtdcInputQuoteField *pInputQuote,
CFfexFtdcRspInfoField *pRsplInfo) ;

image35.png
void OnErrRtnQuoteAction (
CFfexFtdcQuoteActionField *pQuoteAction,
CFfexFtdcRspInfoField *pRspInfo) ;

image36.png
void OnErrRtnExecOrderInsert (
CFfexFtdcInputExecOrderField *pInputExecOrder,

CFfexFtdcRspInfoField #*pRspInfo);

image37.png
void OnErrRtnExecOrderAction (
CFfexFtdcExecOrderActionField *pExecOrderAction,
CFfexFtdcRspInfoField *pRspInfo) ;

image38.png
void OnRtnCombOrder (CshfeFtdcCombOrderField *pCombOrder) ;

image39.png
void OnErrRtnCombOrderInsert (
CFfexFtdcInputCombOrderField *pInputCombOrder,
CFfexFtdcRspInfoField *pRspInfo) ;

image40.png
void OnRspAdminOrderInsert(
CFfexFtdcInputAdminOrderField *pInputAdminOrder,

CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast);

image41.png
void OnRspQryCreditLimit(
CFfexFtdcCreditLimitField *pCreditLimit,
CFfexFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast);

image42.png
void OnRspMarginCombAction (
CFfexFtdcMarginCombActionField *pMarginCombAction,
CFfexFtdcRspInfoField *pRspInfo,

int nRequestID,

bool bIsLast);

image43.png
void OnRtnMarginCombAction (
CFfexFtdcMarginCombActionField *pMarginCombAction) ;

image44.png
void OnRspQryPartClientCombPosition (
CFfexFtdcPartClientCombPositionField *pPartClientCombPosition,

CFfexFtdcRspInfoField *pRspInfo,

int nRequestID,
bool bIsLast);

image45.png
void OnRspQryPartClientLegPosition(
CFfexFtdcPartClientLegPositionField *pPartClientLegPosition,

CFfexFtdcRspInfoField *pRspInfo,
int nRequestID,
bool bIsLast);

image46.png
void OnRtnMarginCombinationLeg (
CFfexFtdcMarginCombinationLegField *pMarginCombinationLeg) ;

image47.png
static CFfexFtdcTradeApi *CreateFtdcTradeApi (const char *pszFlowPath = "");

image48.png
const char *GetVersion(int &nMajorVersion,

int &nMinorVersion)

’

image49.png
void Release();

image50.png
void Init();

image51.png
void Join();

image52.png
const char *GetTradingDay();

image53.png
void RegisterSpi (CFfexFtdcTraderSpi *psSpi)

7

image54.png
void RegisterFront (char *pszFrontAddress) ;

image55.png
void RegisterNameServer (char *pszNsAddress);

image56.png
virtual void SetHeartbeatTimeout (unsigned int timeout);

image57.png
virtual int OpenRequestLog(const char *pszRegLogFileName) ;

image58.png
virtual int OpenResponselog(const char *pszRspLogFileName) ;

image59.png
void SubscribePrivateTopic (TE_RESUME_TYPE nResumeType) ;

image60.png
void SubscribePublicTopic (TE_RESUME_TYPE nResumeType) ;

image61.png
void SubscribeUserTopic (TE_RESUME_TYPE nResumeType) ;

image62.png
void SubscribeForQuote (TE _RESUME_TYPE nResumeType) ;

image63.png
int ReqUserLogin (
CFfexFtdcReqUserlLoginField *pReqUserLoginField,
int nRequestID);

image64.png
int ReqUserLogout (
CFfexFtdcReqUserLogoutField *pReqUserLogout,

int nRequestID);

image65.png
int ReqUserPasswordUpdate (
CFfexFtdcUserPasswordUpdateField *pUserPasswordUpdate,

int nRequestID);

image66.png
int RegSubscribeTopic (
CFfexFtdcDisseminationField * pDissemination,

int nRequestID);

image67.png
int ReqgQryTopic (
CFfexFtdcDisseminationField * pDissemination,
int nRequestID);

image68.png
int ReqgOrderInsert(
CFfexFtdcInputOrderField *pInputOrder,

int nRequestID);

image1.png

image69.png
int ReqgOrderAction (
CFfexFtdcOrderActionField *pOrderAction,

int nRequestID);

image70.png
int RegQuoteInsert(
CFfexFtdcInputQuoteField *pInputQuote,

int nRequestID);

image71.png
int RegQuoteAction (
CFfexFtdcQuoteActionField *pQuoteAction,

int nRequestID);

image72.png
int RegForQuote (
CFfexFtdcInputRegForQuoteField*pRegForQuote,

int nRequestID);

image73.png
int RegExecOrderInsert(
CFfexFtdcInputExecOrderField *pInputExecOrder,

int nRequestID);

image74.png
int RegExecOrderAction (
CFfexFtdcExecOrderActionField *pExecOrderAction,
int nRequestID) ;

image75.png
int RegQryPartAccount (
CFfexFtdcQryPartAccountField *pQryPartAccount,

int nRequestID);

image76.png
struct CFfexFtdcQryPartAccountField

image77.png
int RegQryOrder (
CFfexFtdcQryoOrderField *pQryOrder,

int nRequestID);

image78.png
int RegQryQuote (
CFfexFtdcQryQuoteField *pQryQuote,

int nRequestID);

image79.png
int ReqgQryTrade (
CFfexFtdcQryTradeField *pQryTrade,

int nRequestID);

image80.png
int RegQryClient(
CFfexFtdcQryClientField *pQryClient,
int nRequestID);

image81.png
int RegQryPartPosition (
CFfexFtdcQryPartPositionField *pQryPartPosition,

int nRequestID);

image82.png
int RegQryClientPosition (
CFfexFtdcQryClientPositionField *pQryClientPosition,

int nRequestID);

image83.png
int RegQryInstrument (
CFfexFtdcQryInstrumentField *pQryInstrument,

int nRequestID);

image84.png
int RegQryInstrumentStatus (
CFfexFtdcQryInstrumentStatusField *pQryInstrumentStatus,

int nRequestID);

image85.png
int RegQryMarketData (
CFfexFtdcQryMarketDataField *pQryMarketData,

int nRequestID);

image86.png
int RegQryBulletin(
CFfexFtdcQryBulletinField *pQryBulletin,

int nRequestID);

image87.png
int RegQryMBLMarketData (
CFfexFtdcQryMBLMarketDataField *pQryMBLMarketData,
int nRequestID) ;

image88.png
int RegQryHedgeVolume (
CFfexFtdcQryHedgeVolumeField *pQryHedgeVolume,
int nRequestID) ;

